
Efficient Hardware Implementations for the DES Family

 C. MANIFAVAS I. PAPAEFSTATHIOU, C. SOTIRIOU
Technological Educational Institute Institute of Computer Science

Applied Informatics & Multimedia Dept. Foundation of Research & Technology
 P.O. Box 1939 Vassilika Vouton, P.O. Box 1385

Heraklion, Crete, GREECE

Abstract: - Network data is, currently, often encrypted at a low level. In addition, as it is widely supported, the
majority of future networks will use low-layer (IP level) encryption. Moreover, current trends imply that
future networks are likely to be dominated by mobile terminals, thus, the power consumption and
electromagnetic emissions aspects of encryption devices will be critical. This paper presents several
realizations of one of the most widely used encryption algorithm, the DES/TripleDES, both in software and in
hardware. We present software implementations of the algorithm running on two of the state-of-the-art Intel
IXP network processors and several hardware realizations based on a standard-cell library. The hardware
platforms presented appear to be optimal. Moreover, by placing and routing those designs, we have also
realized that the commercial ASIC synthesis tools cannot accurately predict the area and the performance of
the placed & routed final netlist in such designs, since the ASIC implementations of the encrypted algorithms
include a very large number of wires and a limited number of logic CMOS cells.

Key-Words: - Cryptography, 3DES, AES, Software Implementation, Hardware Implementation

1 Introduction
Low-level data encryption is becoming one of the
essential applications that network devices must
implement. One of the characteristics of data
encryption algorithms is that, when implemented on
a general-purpose CPU, they exhibit poor
performance, even when running on a sophisticated,
state-of-the-art architecture.
 To tackle this problem, special-purpose hardware
encryption cores, such as the one in Intel's IXP-2850
network processor [6], are becoming more and more
ubiquitous in state-of-the-art networks for providing
high-speed encryption. Although, such special-
purpose hardware devices may satisfy bandwidth
requirements, they seem to have high power
requirements and cause high ElectroMagnetic
Emissions (EME).
 Further on, power consumption is becoming more
and more critical as network technology is shifting
from today's wired devices to the mobile terminals
of tomorrow. In addition, EME levels are constantly
increasing by the ever-increasing clock frequencies,
however acceptable EME levels are decreasing due
to the close proximity of IP cores in contemporary
SOC designs. EME may also be used as a means of
attacking security devices, as they may reveal
critical information about the nature of the
encryption algorithm [8].
 In this paper we perform a design space
exploration of one of the most widely used

cryptography algorithms, namely the DES. This
design can be used as a building block in the
construction of 3DES [18] (the modern incarnation
of DES) modules. We have implemented DES in
both software and hardware and report on the
performance and power consumption (and area for
the hardware implementations) for each. In this
paper we investigate a number of additional
implementations of the DES algorithm, and we
present innovative, and very interesting as the
Section 3 shows, results regarding the placement &
routing of all the DES implementations.
 Our software implementations are based on two
of Intel's IXP network platforms, for which we
wrote assembly core implementing both algorithms
and trying to utilize as many as possible of its
various programming features. All of our hardware
implementations have not only been synthesized, but
also placed & routed.
 In the next sections we present our experimental
results and demonstrate that both commodity and
high-end special-purpose network processors exhibit
a significant amount of power consumption at very
modest performance, when executing the encryption
software. We also demonstrate that the most
efficient realization of the DES algorithm, when
taking into account the data bandwidth supported
and the power consumed, is a hardware one. Finally,
we show that the results produced by the synthesis
tools for this class of algorithms, differ significantly

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 212

in both area and performance from the reported
results by the placement & routing tools. This
discrepancy, which we believe it is an important
aspect for anyone implementing encryption
algorithms in hardware, is probably due to the
following fact: the implementations of those
encryption algorithms include a very large number
of wires and limited amount of CMOS logic, and as
it is widely known, the synthesis tools are not very
well in calculating the area and the delays of the
wires.

2 Related Work
There is considerable amount of work done in both
industry and academia related to cryptographic
algorithms and their performance evaluation. In the
literature, there are several implementations of the
two most widely used cryptographic algorithms
(DES [14] and AES[15]) in either software (e.g. [1,
5]), or hardware; the hardware approaches are
tailored to both ASICs and FPGAs.
 Regarding the software implementations of DES,
on various platforms, the maximum throughput
achieved is around 100 Mbits [2,10]. When moving
to the FPGA implementations, the fastest DES
ciphers presented can provide 12 Gb/sec of useful
bandwidth [9], but with key set up latency in the
order of milliseconds, or even 21 Gb/sec [11] with a
highly pipelined design, which is much more
complicated, in terms of hardware, than all the
designs presented in this paper. As far as the ASIC
implementations are concerned, there are fabricated
single chip approaches that support up to 9.6 Gb/sec
[7, 12] even though they are implemented on
relatively old CMOS processes (at 0.6µm and
0.35µm). In this paper, regarding the DES
algorithm, we fill the gap of modern software
implementations by measuring the performance of
both a commodity and a state-of-the-art Network
Processor when executing this encryption algorithm;
more importantly we present a number of low-cost,
low-power implementations for ASICs that achieve
throughputs close to 40Gb/sec.

2 AES-DES S/W Implementations
In this section we explore the performance of the
DES encryption/decryption algorithm implemented
in software running on two network processors, a
commodity and a state-of-the-art one. Moreover, in
order to demonstrate the inefficiency of the software
approach when executing cryptographic algorithms,
we also measured the performance of the other

standard cryptographic algorithm, the AES. The
commodity network processor of choice is the
widely used Intel IXP-1200 [6]. The IXP-1200 is a
powerful, multiprocessor system, composed of six
32-bit RISC processing ``microengines'' and a single
general-purpose StrongARM CPU. To enable fast
on-chip processing the IXP contains a 4K on-chip
SRAM ``scratch'' memory. For certain applications
its performance may support processing rates of up
to 1Gb/sec.
 To evaluate the performance of the IXP processor
when running both algorithms we hand-crafted
assembly code implementing the algorithm. In
addition, we developed several software realizations
of our encryption algorithms, in order to be able to
exploit one or more of the six IXP processing
``microengines''.
 Tables 1 and 2 show the performance of the IXP
processor running our hand-crafted assembly code
on only one of the six microengines. Three different
data blocks were encrypted for these experiments
using the same key. Thus, key setup was run only
once, then each of the three blocks were encrypted
and then decrypted. Table 1 shows the latency,
instruction count (IC) and throughput for the
encryption of the three blocks, whereas Table 2
shows the same data for their decryption.
 In our next experiment we attempted to use the
Strong-ARM CPU instead of a single microengine,
however we discovered that the StrongARM
performance was lower than that of a single
microengine. This can be attributed to the fact that
the on-chip scratch memory exhibits long latency
with respect to the StrongARM processor (as
opposed to the microengines which communicate
through an interconnection network), thus creating a
bottleneck and producing poor performance.
 Next, we distributed six copies of the
encryption/decryption code onto the six IXP
microengines with the aim of achieving even better
performance by utilizing all of the IXP's available
resources. This experiment required a significant
amount of effort for packing the DES and AES code
into a minimum number of instructions in order to
fit the code together with the data onto the small
SRAM scratch memory. It was essential that the
scratch memory was used, since, in any other case,
accesses to an external SRAM caused the
performance of this experiment to be only twice as
high as that of the single microengine one.
Tables 3 and 4 show the performance of both
algorithms using the same experimental setup, but
running on all six of the IXP's microengines. The
figures demonstrate a 5.5 times improvement in
throughput when all the IXP's microengines are

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 213

used. Based on this fact we claim that the latency of
the IXP microengine interconnection network does
not significantly reduce the performance of the
device. However, even this higher throughput when
executing the fastest from the two algorithms (i.e.
AES), is insufficient for contemporary commodity
network architectures, e.g. Fast-Ethernet, which runs
at 100 Mbits/sec, or Wireless LAN, 802.11a running
at 52 Mbits/sec.
 We have also, measured the performance of the
encryption algorithms in the state-of-the art, very
recently introduced, IXP processors [6] (the IXP-
2xxx family) that has just been manufactured in
Intel's 0.13 µm technology.
 The results of our experiments are shown in Table
5 and 6 where all the microengines of IXP-2400 are
employed. Those results are the ones we could
achieve after running our handcrafted pieces of
software realizations of the two encryption
algorithms running on one to eight microengines. A
first remark is that the instruction count in the
IXP2400 is slightly lower than that on the IXP1200,
mainly due to the fact that
the IXP2400 has a different instruction set, and it
supports some special "powerful" instructions
utilizing some of the unique hardware features
provided by it (for example the 16 entry CAM
which is associated with each Microengine).
 As it can be seen from those tables, even in those
high-end devices, the maximum bandwidth
supported is not more than 80Mb/sec for the DES
and 120 Mb/sec for the AES. As a result, we believe
that, the software implementation of those
encryption algorithms cannot, support the state-of-
the-art LAN speeds, even if those pieces of software
are run on a high-end network multi-processor.
Similar results regarding the software performance
in various, non-network specific, platforms, can be
found in [17]. The applicability of this argument in
the world of network processing elements, in
general, is also shown by the fact that, as it was
mentioned earlier, Intel's high-end family of
Network Processors include a model with an
embedded hardware DES block (IXP2850).
 Table 7 shows the mean power consumption
actually measured in the development board, when
the IXP1200 was running our experiments. These
figures show only the power consumed by the
processor core and not by the processor's interface,
which operates at a different voltage level. The
power consumption was about the same no matter
which of the two cryptography algorithms the core
was executing. These measurements are in line with
the IXP's datasheet, which states a maximum power
consumption of 4 Watts and a typical power

consumption of approximately 2.4 Watts. In these
experiments we have not come close to the
maximum power consumption, by not using the
StrongARM core.
 The power figures demonstrate that even a
dedicated, state-of-the-art, low-power CPU,
certainly exceeds the power requirements of mobile
network terminals, when executing either of the two
most widely used cryptography algorithms.

2 DES Hardware Implementations
In this section we present three hardware
implementations of the DES algorithm. All designs
were synthesized, using Synopsys [16]; placed and
routed, using Cadence's Silicon Ensemble [3], and
targeted to the 0.18µm VST-UMC [4] technology
library. We also present, separately, the results
produced by the synthesis tools and those produced
by the placement & routing tools, that make the final
silicon masks. As it is demonstrated in the next
sections, those results differ by a relatively large
amount, probably, due to the fact that there is a large
number of wires in any DES implementation.
 Two of the hardware implementations were based
on just permutations of bits and a final XOR of
them. The third was our own design optimized for
low-power, and it is based on three hardware
modules the RL, F and Key, just as the software
implementation of the DES, which comprises of
those three subtasks. This design was also used as
the basis for the asynchronous designs described in
the next subsection. Table 8 contrasts the
characteristics of the three synchronous DES
designs.
 The data presented in Table 8 were obtained by
post-synthesis simulation. The power consumption
figures were obtained by performing switching
activity annotation of the circuit during simulation.
The area figures are cell totals.
 The Area-Optimized version aims to achieve
minimum area for a DES algorithm implementation,
by performing the 16 steps of the DES algorithm
iteratively and with limited CMOS resources,
whereas the Performance-Optimized version aims at
maximum throughput by employing a 16-stage
pipeline, comprising of 16 identical high-speed DES
modules. Our own design, has 16 pipeline stages as
well, and each stage is optimized mainly for low
power by trying to reduce both the number of the
CMOS cells utilized at a given time and the signal
transitions to a minimum. The actual architecture is
very similar to the `` Coarse-grain'' asynchronous
one described in detail in the next section. This

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 214

“Coarse grain” asynchronous design comes from a
synchronous one to which we have applied the
“desynchronization” method, also presented in this
next section}. As those results demonstrate, our
design succeeds in its target since it has much lower
power consumption than the Permutation-Based
performance optimized one, while its speed is not
significantly lower. In other words, the performance
to power ratio is about 30% better in our design than
in the widely used permutation based one.
 We have also placed and routed (P&R) all those
designs using Cadence's Silicon Ensemble flat P&R
tool. Post P&R results demonstrated a significant
increase in the latency of the designs as Table 9
clearly shows. This increase in latency is much
higher than the 20% factor used as a rule of thumb
in the majority of the general-purpose hardware
modules [13]. This discrepancy, seems to mainly
come from the fact that in the implementations of
those encryption algorithms the fraction of wires
over logic cells is very high (much larger than in
other more regular devices, such as processors for
example). Additionally, as the flat layout of our own
Performance Optimized DES core shows in Figure
1, the interconnected basic blocks, within an
implementation, have great variations in terms of the
their complexity, and therefore they cannot easily
"pitch-matched" (at least automatically by the tools
and without any human interaction).
 Moreover, the power consumption figures
actually measured after P&R, differ significantly
from the ones produced by switching annotation of
the post synthesis circuit. This is probably due to the
facts that a) the maximum working frequency after P
& R is different than that reported by the synthesis
tools, and b) the synthesis tools cannot accurately
predict the capacitance of the wires or the exact
impact of factors such as the actual applied voltage.

4 Conclusions
This paper explored different implementation
choices for implementing one of the most widely
used cryptography algorithm, namely the DES, and
as a consequence 3DES, the modern incarnation of
DES. We presented software implementations of the
algorithms on both a commodity and a the state-of-
the-art Intel's IXP network processor and
demonstrated that both the performance and the
power consumption of those realizations are
inadequate for mobile, or high-speed network
terminals. We also presented a set of three possible
hardware implementations.

 We have demonstrated that the most efficient
implementation of the DES algorithm in terms of
data bandwidth serviced and power consumed, is
indeed a hardware one. This design can sustain
21Gb/s of throughput at a very modest power
consumption of about 400mW.

References:
[1] G. Bertoni, L. Breveglieri, P. Fragneto, M.

Macchetti, and S. Marchesi, Efficient Software
Implementation of AES on 32-Bit Platforms, In
Proceedings of Cryptographic Hardware and
Embedded Systems (CHES'02), pp. 159--171,
2002

[2] E. Biham, A Fast New DES Implementation in
Software, In Fast Software Encryption, 4th
International Workshop (FSE'97), Haifa, Israel,
January 20-22, 1997, vol. 1267 of Lecture Notes
in Computer Science, pp. 260--271. Springer,
1997

[3] Cadence Design Systems, Envisia Silicon
Ensemble Place-and-Route Reference

[4] EUROPRACTICE, UMC 0.18µm CMOS
technology documentation

[5] B. Gladman, Implementation Experience with
AES Candidate Algorithms, In Proceedings of
Second AES Candidate Conference (AES2), 1999

[6] Intel, The Next Generation of Intel IXP Network
Processors, Intel Technology Journal, 6(3), Aug.
2002

[7] I. Kim, C.S. Steele, and J.G. Koller, A Fully
Pipelined 700MBytes/s DES Encryption Core, In
Proceedings of 9th Great Lakes Symposium on
VLSI, page 386, 1999.

[8] M.G. Kuhn, Cipher Instruction Search Attack on
the Bus-Encryption Security Microcontroller
DS5002FP, IEEE Transactions on Computers,
47(10):1153--1157, Oct. 1998

[9] C. Patterson, High performance DES encryption
in Virtex FPGAs using JBits, In Proceedings of
IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM'00), pp.
113--121, 2000

[10] A. Pfitzmann and R. Amann, More efficient
software implementations of (generalized) DES,
Computers and Security, 12(5):477--500, Aug
1993

[11] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater,
and J.-D. Legat, Efficient Uses of FPGAs for
Implementations of DES and Its Experimental
Linear Cryptanalysis, IEEE Transactions on
Computers, 52(4):473--482, Apr 2003

[12] T. Schaffer, A. Glaser, S. Rao, and P. Franzon,
A Flip-Chip Implementation of the Data

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 215

Encryption Standard (DES), In Proceedings of
IEEE Multi-Chip Module Conference
(MCMC'97), page 13, 1997

[13] ST Microelectronics, Notes on Synthesis,
Placement and Routing,

[14] F.I.P. Standard, Data Encryption Standard
(DES), National Institute of Standards and
Technology (NIST), FIPS 46-3, Oct 1999

[15] F.I.P. Standard, Advanced Encryption Standard
(AES), National Institute of Standards and
Technology (NIST), 2001

[16] Synopsys, Design Analyzer Reference Manual,
2000

[17] J. Worley, B. Worley, T. Christian, and C.
Worley, AES Finalists on PA-RISC and IA-64:
Implementations and Performance, In
Proceedings of the 3rd Advanced Encryption
Standard (AES) Candidate conference, 2000

[18] TripleDES, ANSI X9.52: Triple Data
Encryption Algorithm Modes of Operation. 1998

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 216

Fig. 1: Layout of our Performance Optimized
 Synchronous DES Implementation

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 217

