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Abstract: - Network data is, currently, often encrypted at a low level. In addition, as it is widely supported, the 
majority of future networks will use low-layer (IP level) encryption. Moreover,  current trends imply that 
future networks are likely to be dominated by mobile terminals, thus, the power consumption and 
electromagnetic emissions aspects of encryption devices will be critical. This paper presents several 
realizations of one of the most widely used encryption algorithm, the DES/TripleDES, both in software and in 
hardware. We present software implementations of the algorithm running on two of the state-of-the-art Intel 
IXP network processors and several hardware realizations based on a standard-cell library. The hardware 
platforms presented appear to be optimal. Moreover, by placing and routing those designs, we have also 
realized that the commercial ASIC synthesis tools cannot accurately predict the area and the performance of 
the placed & routed final netlist in such designs, since the ASIC implementations of the encrypted algorithms 
include a very large number of wires and a limited number of logic CMOS cells. 
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1   Introduction 
Low-level data encryption is becoming one of the 
essential applications that network devices must 
implement. One of the characteristics of data 
encryption algorithms is that, when implemented on 
a general-purpose CPU, they exhibit poor 
performance, even when running on a sophisticated, 
state-of-the-art architecture. 
    To tackle this problem, special-purpose hardware 
encryption cores, such as the one in Intel's IXP-2850 
network processor [6], are becoming more and more 
ubiquitous in state-of-the-art networks for providing 
high-speed encryption. Although, such special-
purpose hardware devices may satisfy bandwidth 
requirements, they seem to have high power 
requirements and cause high ElectroMagnetic 
Emissions (EME).  
    Further on, power consumption is becoming more 
and more critical as network technology is shifting 
from today's wired devices to the mobile terminals 
of tomorrow. In addition, EME levels are constantly 
increasing by the ever-increasing clock frequencies, 
however acceptable EME levels are decreasing due 
to the close proximity of IP cores in contemporary 
SOC designs. EME may also be used as a means of 
attacking security devices, as they may reveal 
critical information about the nature of the 
encryption algorithm [8]. 
    In this paper we perform a design space 
exploration of one of the most widely used 

cryptography algorithms, namely the DES. This 
design can be used as a building block in the 
construction of 3DES [18] (the modern incarnation 
of DES) modules. We have implemented DES in 
both software and hardware and report on the 
performance and power consumption (and area for 
the hardware implementations) for each. In this 
paper we investigate a number of additional 
implementations of the DES algorithm, and we 
present innovative, and very interesting as the 
Section 3 shows, results regarding the placement & 
routing of all the DES implementations. 
    Our software implementations are based on two 
of Intel's IXP network platforms, for which we 
wrote assembly core implementing both algorithms 
and trying to utilize as many as possible of its 
various programming features. All of our hardware 
implementations have not only been synthesized, but 
also placed & routed. 
    In the next sections we present our experimental 
results and demonstrate that both commodity and 
high-end special-purpose network processors exhibit 
a significant amount of power consumption at very 
modest performance, when executing the encryption 
software. We also demonstrate that the most 
efficient realization of the DES algorithm, when 
taking into account the data bandwidth supported 
and the power consumed, is a hardware one. Finally, 
we show that the results produced by the synthesis 
tools for this class of algorithms, differ significantly 
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in both area and performance from the reported 
results by the placement & routing tools. This 
discrepancy, which we believe it is an important 
aspect for anyone implementing encryption 
algorithms in hardware, is probably due to the 
following fact: the implementations of those 
encryption algorithms include a very large number 
of wires and limited amount of CMOS logic, and as 
it is widely known, the synthesis tools are not very 
well in calculating the area and the delays of the 
wires. 
 
 
2   Related Work 
There is considerable amount of work done in both 
industry and academia related to cryptographic 
algorithms and their performance evaluation. In the 
literature, there are several implementations of the 
two most widely used cryptographic algorithms 
(DES [14] and AES[15]) in either software (e.g. [1, 
5]), or hardware; the hardware approaches are 
tailored to both ASICs and FPGAs. 
    Regarding the software implementations of DES, 
on various platforms, the maximum throughput 
achieved is around 100 Mbits [2,10]. When moving 
to the FPGA implementations, the fastest DES 
ciphers presented can provide 12 Gb/sec of useful 
bandwidth [9], but with  key set up latency in the 
order of milliseconds, or even 21 Gb/sec [11] with a 
highly pipelined design, which is much more 
complicated, in terms of hardware, than all the 
designs presented in this paper. As far as the ASIC 
implementations are concerned, there are fabricated 
single chip approaches that support up to 9.6 Gb/sec 
[7, 12] even though they are implemented on 
relatively old CMOS processes (at 0.6µm and 
0.35µm). In this paper, regarding the DES 
algorithm, we fill the gap of modern software 
implementations by measuring the performance of 
both a commodity and a state-of-the-art Network 
Processor when executing this encryption algorithm; 
more importantly we present a number of low-cost, 
low-power implementations for ASICs that achieve 
throughputs close to 40Gb/sec. 
 
 
2   AES-DES S/W Implementations 
In this section we explore the performance of the 
DES encryption/decryption algorithm implemented 
in software running on two network processors, a 
commodity and a state-of-the-art one. Moreover, in 
order to demonstrate the inefficiency of the software 
approach when executing cryptographic algorithms, 
we also measured the performance of the other 

standard cryptographic algorithm, the AES. The 
commodity network processor of choice is the 
widely used Intel IXP-1200 [6]. The IXP-1200 is a 
powerful, multiprocessor system, composed of six 
32-bit RISC processing ``microengines'' and a single 
general-purpose StrongARM CPU. To enable fast 
on-chip processing the IXP contains a 4K on-chip 
SRAM ``scratch'' memory. For certain applications 
its performance may support processing rates of up 
to 1Gb/sec.  
    To evaluate the performance of the IXP processor 
when running both algorithms we hand-crafted 
assembly code implementing the algorithm. In 
addition, we developed several software realizations 
of our encryption algorithms, in order to be able to 
exploit one or more of the six IXP processing 
``microengines''. 
    Tables 1 and 2 show the performance of the IXP 
processor running our hand-crafted assembly code 
on only one of the six microengines. Three different 
data blocks were encrypted for these experiments 
using the same key. Thus, key setup was run only 
once, then each of the three blocks were encrypted 
and then decrypted. Table 1 shows the latency, 
instruction count (IC) and throughput for the 
encryption of the three blocks, whereas Table 2 
shows the same data for their decryption.  
    In our next experiment we attempted to use the 
Strong-ARM CPU instead of a single microengine, 
however we discovered that the StrongARM 
performance was lower than that of a single 
microengine. This can be attributed to the fact that 
the on-chip scratch memory exhibits long latency 
with respect to the StrongARM processor (as 
opposed to the microengines which communicate 
through an interconnection network), thus creating a 
bottleneck and producing poor performance. 
    Next, we distributed six copies of the 
encryption/decryption code onto the six IXP 
microengines with the aim of achieving even better 
performance by utilizing all of the IXP's available 
resources. This experiment required a significant 
amount of effort for packing the DES and AES code 
into a minimum number of instructions in order to 
fit the code together with the data onto the small 
SRAM scratch memory. It was essential that the 
scratch memory was used, since, in any other case, 
accesses to an external SRAM caused the 
performance of this experiment to be only twice as 
high as that of the single microengine one. 
Tables 3 and 4 show the performance of both 
algorithms using the same experimental setup, but 
running on all six of the IXP's microengines. The 
figures demonstrate a 5.5 times improvement in 
throughput when all the IXP's microengines are 
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used. Based on this fact we claim that the latency of 
the IXP microengine interconnection network does 
not significantly reduce the performance of the 
device. However, even this higher throughput when 
executing the fastest from the two algorithms (i.e. 
AES), is insufficient for contemporary commodity 
network architectures, e.g. Fast-Ethernet, which runs 
at 100 Mbits/sec, or Wireless LAN, 802.11a running 
at 52 Mbits/sec.  
    We have also, measured the performance of the 
encryption algorithms in the state-of-the art, very 
recently introduced, IXP processors [6] (the IXP-
2xxx family) that has just been manufactured in 
Intel's 0.13 µm technology. 
    The results of our experiments are shown in Table 
5 and 6 where all the microengines of IXP-2400 are 
employed. Those results are the ones we could 
achieve after running our handcrafted pieces of 
software realizations of the two encryption 
algorithms running on one to eight microengines. A 
first remark is that the instruction count in the 
IXP2400 is slightly lower than that on the IXP1200, 
mainly due to the fact that 
the IXP2400 has a different instruction set, and it 
supports some special "powerful" instructions 
utilizing some of the unique hardware features 
provided by it (for example the 16 entry CAM 
which is associated with each Microengine).  
    As it can be seen from those tables, even in those 
high-end devices, the maximum bandwidth 
supported is not more than 80Mb/sec for the DES 
and 120 Mb/sec for the AES. As a result, we believe 
that, the software implementation of those 
encryption algorithms cannot, support the state-of-
the-art LAN speeds, even if those pieces of software 
are run on a high-end network multi-processor. 
Similar results regarding the software performance 
in various, non-network specific, platforms, can be 
found in [17].  The applicability of this argument in 
the world of network processing elements, in 
general, is also shown by the fact that, as it was 
mentioned earlier, Intel's high-end family of 
Network Processors include a model with an 
embedded hardware DES block (IXP2850). 
    Table 7 shows the mean power consumption 
actually measured in the development board, when 
the IXP1200 was running our experiments. These 
figures show only the power consumed by the 
processor core and not by the processor's interface, 
which operates at a different voltage level. The 
power consumption was about the same no matter 
which of the two cryptography algorithms the core 
was executing.  These measurements are in line with 
the IXP's datasheet, which states a maximum power 
consumption of 4 Watts and a typical power 

consumption of approximately 2.4 Watts. In these 
experiments we have not come close to the 
maximum power consumption, by not using the 
StrongARM core. 
    The power figures demonstrate that even a 
dedicated, state-of-the-art, low-power CPU, 
certainly exceeds the power requirements of mobile 
network terminals, when executing either of the two 
most widely used cryptography algorithms. 
 
 
2   DES Hardware Implementations 
In this section we present three hardware 
implementations of the DES algorithm.  All designs 
were synthesized,  using Synopsys [16]; placed and 
routed, using Cadence's Silicon Ensemble [3], and 
targeted to the 0.18µm VST-UMC [4] technology 
library. We also present, separately, the results 
produced by the synthesis tools and those produced 
by the placement & routing tools, that make the final 
silicon masks. As it is demonstrated in the next 
sections, those results differ by a relatively large 
amount, probably, due to the fact that there is a large 
number of wires in any DES implementation. 
    Two of the hardware implementations were based 
on just permutations of bits and a final XOR of 
them. The third was our own design optimized for 
low-power, and it is based on three hardware 
modules the RL, F and Key, just as the software 
implementation of the DES, which comprises of 
those three subtasks. This design was also used as 
the basis for the asynchronous designs described in 
the next subsection. Table 8 contrasts the 
characteristics of the three synchronous DES 
designs. 
    The data presented in Table 8 were obtained by 
post-synthesis simulation. The power consumption 
figures were obtained by performing switching 
activity annotation of the circuit during simulation. 
The area figures are cell totals.  
    The Area-Optimized version aims to achieve 
minimum area for a DES algorithm implementation, 
by performing the 16 steps of the DES algorithm 
iteratively and with limited CMOS resources, 
whereas the Performance-Optimized version aims at 
maximum throughput by employing a 16-stage 
pipeline, comprising of 16 identical high-speed DES 
modules. Our own design, has 16 pipeline stages as 
well, and each stage is optimized mainly for low 
power by trying to reduce both the number of the 
CMOS cells utilized at a given time and the signal 
transitions to a minimum. The actual architecture is 
very similar to the `` Coarse-grain'' asynchronous 
one described in detail in the next section. This 
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“Coarse grain” asynchronous design comes from a 
synchronous one to which we have applied the 
“desynchronization” method, also presented in this 
next section}. As those results demonstrate, our 
design succeeds in its target since it has much lower 
power consumption than the Permutation-Based 
performance optimized one, while its speed is not 
significantly lower. In other words, the performance 
to power ratio is about 30% better in our design than 
in  the widely used permutation based one. 
    We have also placed and routed (P&R) all those 
designs using Cadence's Silicon Ensemble flat P&R 
tool. Post P&R results demonstrated a significant 
increase in the latency of the designs as Table 9 
clearly shows. This increase in latency is much 
higher than the 20% factor used as a rule of thumb 
in the majority of the general-purpose hardware 
modules [13]. This discrepancy,  seems to mainly 
come from the fact that in the implementations of 
those encryption algorithms the fraction of wires 
over logic cells is very high (much larger than in 
other more regular devices, such as processors for 
example). Additionally, as the flat layout of our own 
Performance Optimized DES core shows in Figure 
1, the interconnected basic blocks, within an 
implementation, have great variations in terms of the 
their complexity, and therefore they cannot easily 
"pitch-matched" (at least automatically by the tools 
and without any human interaction). 
    Moreover, the power consumption figures 
actually measured after P&R, differ significantly 
from the ones produced by switching annotation of 
the post synthesis circuit. This is probably due to the 
facts that a) the maximum working frequency after P 
& R is different than that reported by the synthesis 
tools, and b) the synthesis tools cannot accurately 
predict the capacitance of the wires or the exact 
impact of factors such as the actual applied voltage. 
 
 
4   Conclusions 
This paper explored different implementation 
choices for implementing one of the most widely 
used cryptography algorithm, namely the DES, and 
as a consequence 3DES, the modern incarnation of 
DES. We presented software implementations of the 
algorithms on both a commodity and a the state-of-
the-art Intel's IXP network processor and 
demonstrated that both the performance and the 
power consumption of those realizations are 
inadequate for mobile, or high-speed network 
terminals. We also presented a set of three  possible 
hardware implementations.  

    We have demonstrated that the most efficient 
implementation of the DES algorithm in terms of 
data bandwidth serviced and power consumed, is 
indeed a hardware one. This design can sustain 
21Gb/s of throughput at a very modest power 
consumption of about 400mW. 
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Fig. 1: Layout of our Performance Optimized  
     Synchronous DES Implementation 
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