
Formal Analysis and Verification of a Communication Protocol

XIN BEN LI, DE CHAO SUN
Department of Computer Science and Technology

Zhejiang Wanli University
8 Qianhu South Road, Ningbo, Zhejiang, 315100

PEOPLE’S REPUBLIC OF CHINA

Abstract: - Reliability is one of the major concerns in the design of embedded systems. Formal verification by
model checking is of a great advantage in verifying the correctness of computer system, whether they are
hardware, software or a combination. The paper reports the design and development of an intelligent telephone
alarm that is a single-chip computer system, and the formal verification of communication protocol is described
based on the model checker NuSMV.

Key-Words: - Model check; Communication Protocol; NuSMV; Single-chip Processor

1 Introduction
Reliability plays an important role in the design of
embedded systems or other electronic systems,
especially for the safety-critical or mission-critical
systems. Formal verification is one of the methods
that can help the designer to test the properties of the
system and debug the errors during the course of
system development, so that the correctness of the
design can be guaranteed.
 As for formal verification techniques, Michael
Huth[1], from logics’ application point of view, has
classified the approaches into proof-based and
model-based, and pointed that model checking is an
model-based property-verification approach and is
used mainly for concurrent and reactive systems. W.
Marrero and J. Wen [2,5] applied model checking to
the analysis of security protocols that consist of a
sequence of messages with encrypted parts. After
analysis some applications of formal verification to
functional requirements (specifications) of circuits, I.
Pill etc. in [6] noted that the crucial activity of
producing an implementation satisfying given
properties is the quality enhancement of the
specifications before the design phase, and presented
techniques and guidelines to explore and assure the
quality of a formal specification.
 This paper reports the design and development of
an intelligent telephone alarm that is based on the
single-chip computer system, and the emphasis is
placed on the formal analysis and verification of the
communication protocol by using the model checker
NuSMV.

2 Design Requirements of the Alarm

For most office or home used alarms, such as the
smoke detector & alarm device, a common
characteristic is that it can work quite well on the spot
if something happens (such as the fire). But the
situation occurred might not be handled immediately
and properly if nobody is in, especially in the
evenings. The reason is that such kind of alarms
cannot give an alarm remotely. Based on the demand
of the market, a new type of intelligent alarm and
control system has been designed that functions as
follows:
♦ It can sample the information from the different

alarm sources, decision its actions and, if
necessary, give the alarm signal on the spot and
to the remote agent via the public telephone line.

♦ The alarm message delivered can be audio or
digital signals depending on the user’s choice.
The four pre-set telephone numbers are calling
one by one until one of them give the answer.

♦ User can remotely reset and set the calling
numbers and safety password using his telephone
if the telephone number has changed. User can
also control the state of the alarm to open or close
using his telephone.

 The system consists mainly of the sensor signal
process circuit, dual tone multi-frequency (DTMF)
send/receive circuit, audio control & record/play
circuit etc. Since most of functions for the
communication and control are carried out by the
DTMF send and receive circuit, we will focus on this
part. On the top of the Fig.1 is the single-chip
processor 89C51 that is the center of control and
information process. The 5087 is a DTMF chip and
play the sender’ role, i.e., it receives the 89C51’s
8-bit output signals (corresponding to one dial
keypad number), transforms the dial number into the
DTMF signals and transmits the signals to remote

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 103

telephones. The chip 8870, in the bottom left-hand
corner of the Fig1, is the DTMF receiver, i.e., it
receives the audio signals from remote telephones
and decodes them into four bits for reading by 89C51.
Note that the eight output ports of 74LS374 are
connected into the input C1-C4 and R1-R4 of 5087
chip, which play the keypad’s role of a telephone, and
89C51’s 8-bits output is connected to the input ports
of 74LS373, so that the CPU can drives the chip 5087
sending the audio signals to remote telephone. So, the
sending path of the message is formed from 89C51,
74LS373, and 5987 to telephone via PSTN. Similarly
the receiving path of message can be formed.

 Due to the reliable requirements of the message
delivery, a communication protocol is designed and
its correctness needs to be verified by using some
formal tool, such as NuSMV. In the following section,
we will focus on the analysis and verification of the
protocol.

3 Verification and Analysis of the
Communication Protocol Model

3.1 Model checker NuSMV

Model checking is an automatic, model-based,
property-verification approach for formal
verification. In model checking, the models M are
transition systems and the propertiesφ are formulas
in temporal logic. To verify that a system satisfies a
property, we must do three things: the first is to
model the system using the description language of a
model checker, arriving at a model M; then to code
the property using the specification language of the
model checker, resulting in a temporal logic formula
φ; and the third is to run the model checker with
inputs M andφ. The model checker can output the
answer ‘yes’ if M |=φ and ‘no’ otherwise; In the
latter case, most model checkers also produce a trace
of system behavior that causes this failure. This
automatic generation of such ‘counter traces’ is an
important tool in the design and debugging of
systems.
 NuSMV stands for ‘New Symbolic Model
Verifier.’ [3,4] It is a software tool for the formal
verification and allows checking finite state systems
against specifications in the temporal logic, including
linear-time temporal logic (LTL) and computational
tree logic (CTL). The input language of NuSMV is
designed to allow the description of finite state
systems that range from completely synchronous to
completely asynchronous. The NuSMV language
provides for modular hierarchical descriptions and
for the definition of reusable components. The basic
purpose of the NuSMV language is to describe (using
expressions in propositional calculus) the transition
relation of a finite Kripke structure. Following are the
formal definitions about the syntax and semantics of
one of temporal logic CTL, i.e., Computation Tree
Logic.
Definition 3.1 The syntax of CTL formulas can be
given in Backus Naur form as follow:

[] []φφφφφφ
φφφφφφ

φφφφφφ

UE|UA|EG|AG
|EF|AF|EX|AX|)(

|)(|)(|)(||T|::
→

∨∧¬∨= p

Where p ranges over a set of atomic formulas.
 Notice that each of the CTL temporal connectives
is a pair of symbols. The first of the pair is one of A
and E. A means ‘along All paths’ (inevitably) and E
means ‘along at least (there Exists) one path’
(possibly). The second one of the pair is X, F, G, or U,
meaning ‘neXt state,’ ‘some Future state,’ ‘all future
states (Globally)’ and ‘Until’, respectively. Notice
that AU and EU are binary. The symbols X, F, G and
U cannot occur without being proceeded by an A or
an E; every A or E must have one of X, F, G, and U to
accompany it.
Definition 3.2 A transition system M =(S, →，L) is

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 104

a set of states S endowed with a transition relation →
(a binary relation on S), such that every s∈S has
some s’∈S with s→s’, and a labelling function L:S
→P(Atoms).
 Transition systems are also simply called models.
So a model has a collection of states S, a relation →,
saying how the system can move form state to state,
and, associated with each state s, one has the set of
atomic propositions L(s) which are true at that
particular state. Here P(Atoms) stands for the power
set of Atoms, a collection of atomic descriptions.
 CTL formulas are interpreted over transition
systems. Let M=(S, →，L) be such a model, s∈S
and φ a CTL formula. The definition of whether M,
s|=φ holds can be given formally as following
definition.
Definition 3.3 Let M =(S, →，L) be a model for
CTL, s in S, φ a CTL formula. The relation M, s|=φ
is defined by structural induction onφ:

(1) M, s|=T and M, s|≠^
(2) M, s|=p iff p∈L（s）
(3) M, s|= Øφ iff M, s|≠φ
(4) M, s|=φ1∧φ2 iff M, s|=φ1 and M, s|=φ2
(5) M, s|=φ1∨φ2 iff M, s|=φ1 or M, s|=φ2
(6) M, s|=φ1→φ2 iff M, s|≠φ1 or M, s|=φ2
(7) M, s|=AXφ iff for all s1 such that s→s1 we

have M, s1|=φ. Thus, AX says: ‘in every next
state.’

(8) M, s|=EXφ iff for some s1 such that s→s1 we
have M, s1|=φ. Thus, EX says: ’in some next
state.’ E is dual to A --- in exactly the same
way that $ is dual to " in predicate logic.

(9) M, s|=AGφ holds iff for all path s1→s2→s3
→…, where s1 equals s, and all si along the
path, we have M, si|=φ. That is, for ALL
computation paths beginning in s the property
φ holds Globally, and ‘along the path’ include
the path’s initial states s.

(10) M, s|=EGφ holds iff there is a path s1→s2
→s3→…, where s1 equals s, and all si along
the path, we have M, si|=φ, i.e., there Exists a
paths beginning in s such thatφ holds
Globally along the path.

(11) M, s|=AFφ holds iff for all path s1→s2→s3
→…, where s1 equals s, there is some si such
that M, si|=φ. That is, for ALL computation
paths beginning in s there will be some Future
state whereφ holds.

(12) M, s|=EFφ holds iff there is a path s1→s2→
s3→…, where s1 equals s, and for some si

along the path, we have M, si|=φ, i.e., there
Exists a computation path beginning in s such
that φ holds in some Future state;

(13) M, s|=A[φ1Uφ2] holds iff for all paths s1
→s2→s3→…, where s1 equals s, that path
satisfiesφ1Uφ2, i.e., there is some si along
the path, such that M, si|=φ2, and for each
j<I, we have M, sj|=φ1.

(14) M, s|=A[φ1Uφ2] holds iff there is a path s1
→s2→s3→…, where s1 equals s, and that path
satisfiesφ1Uφ2, as specified in (13).That
means there Exists a computation path
beginning in s such thatφ1 Untilφ2 holds on
it.

3.2 NuSMV description of the Protocol
The protocol transmits the alarm messages along the
sending path to the remote telephones. Since the four
remote telephones may have no person near by to
answer and result in the loss of messages, the
message will be send again and again until one of
telephone gives a answer. This means that the
protocol guarantees the communication between the
sender and the receiver being successful.
 The protocol works as follows. There are four
entities, or agents: the sender, the receiver, the
message path and the acknowledgement path. The
sender transmits the first part of the message together
with the ‘control’ code *. If, and when, the receiver
receives the message, it sends code * along the
acknowledgement path. When the sender receives
this acknowledgement, it sends the next packet with
the control bit #. If and when the receiver receives
this, it acknowledges by sending a code # on the
acknowledgement path. By alternating the control code,
both receiver and sender can guard against duplicating
messages and losing messages (i.e., they ignore messages
that have the unexpected control code).
 If the sender doesn’t get the expected
acknowledgement, it continually resends the message,
until the acknowledgement arrives. If the receiver
doesn’t get the message with the expected control
code, it continually resends the previous
acknowledgement.
 Fairness is also important for the protocol. It
comes in because, although we want to model the fact
that the path can lose messages, we want to assume
that, if we send a message often enough, eventually it
will arrive. In other words, the channel cannot lose an
infinite sequence of messages. If we did not make this
assumption, then the channel could lose all messages
and, in that case, the protocol would not work.

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 105

 For our case of the communication protocol, we
assume that the text to be sent consists of a telephone
number with the alarm message, which are sent
sequentially. The variable message1 is the current
number of the message being sent, whereas message2
is the control signal. The definition of the module
Sender is given In Fig. 2.
MODULE sender(ack)
VAR
 St :{sending, sent};
 Message1 :boolean;
 Message1 :boolean;
ASSIGN
 Init(st) := sending;
 Next(st) :=

case
 Ack = message2 & !(st=sent) :sent;

1 :sending;
esac

 next(message1) :=
case

 st = sent :{0,1};
1 :message1;

esac
 next(message2) :=

case
 st = sent : !message2;

1 :message2;
esac

FAIRNESS running
SPEC AG ! (sender.st = sent → EF receiver.st=received)

 Fig.2 the sender in NuSMV

 This module spends most of its time in st=sending,
going only briefly to st=sent when it receives an
acknowledgement corresponding to the control code
of the message it has been sending. The variables
message1 and message2 represent the actual data
being sent and the control code, respectively. On
successful transmission, the module obtains a new
message to send and returns to st=sending. The new
message1 is obtained non-deterministically (i.e.,
from the sensors); message2 alternates in value. We
impose FAIRNESS running, i.e., the sender must be
selected to run infinitely often. The SPEC tests that
we can always succeed in sending the current
message.
 The module receiver is programmed in a similar
way. Another two modular is about the two paths.
The acknowledgement path is an instance of the
chan1. Its lossy character is specified by the
assignment to forget. The value of input should be
transmitted to output, unless forget is true. The
sending channel chan2, used to send messages, is
similar. Again, the non-deterministic variable forget
determines whether the current code is lost or not.
Either both parts of the message get through, or

neither of them does (the channel is assumed not to
corrupt messages).

Finally, we tie the four modular together with the
modular main whose role is to connect together the
components of the system, and giving them initial
value of their parameters, see Fig. 3.
MODULE main
VAR
 s: process sender(ack-chan.output);
 r: process receiver(msg-chan.output1, msg-chan.output2);
 msg-chan :process chan2(s.message1, s.message2);
 ack-chan :process chan1(r.ack);
ASSIGN
 init(s.message2) := 0;
 init(r.expected) := 0;
 Init(r.ack) := 1;
 Init(msg-chan.output2) := 1;
 Init(ack-chan.output) := 1;

SPEC AG ! (sender.st = sent → EF receiver.st=received)

 Fig.3 The main in NuSMV
 The paths have fairness constraints that are
intended to model the fact that, although paths can
lose message, we assume that they infinitely often
transmit the message correctly.
 After programmed all the source code of the
protocol’s model and its key properties into the file
dtmf.smv, we can run NuSMV and debug the
protocol. At last the protocol satisfies with the
specifications what we expected, although several
failures occurred during the beginning of the
verification.

4 Conclusion
As a model-based formal verification tool, NuSMV
is quite powerful and useful in the verification of the
systems’ design deficiency. The paper reports the
design and development of an intelligent telephone
alarm that is a single-chip computer system, and the
formal verification of communication protocol is
described based on the model checker NuSMV. Our
experience showed that modeling system properly
and specifying the properties to be verified precisely
are key steps for designers, and the results
demonstrated that the design of our communication
protocol is proper and the system functions correctly.

References:
[1] Michael Huth and Mark Ryan. Logic in

Computer Science---Modeling and Reasoning
about Systems, Cambridge University Press,
2004.

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 106

[2] W. Marrero, E. Clarke, S Jha. Model Checking
for Security Protocols. In DIMACS Workshop on
Design and Formal Verification of Security
Protocols, 1997.

[3] A. Cimatti, E. M. Clarke, E. Giunchiglia, etc..
NuSMV 2: An Open Source Tool for Symbolic
Model Checking, In Proceeding of International
Conference on Computer-Aided Verification (CAV
2002). Copenhagen, Denmark, July 27-31, 2002.

[4] R. Cavada, A. Cimatti, C. A. Jochim, etc.. NuSMV
2.4 User Manual. http://nusmv.irst.itc.it.

[5] J. Wen, M. Zhang, X. Li. New Approach for
Formal Analysing Encryption Protocols,
Computer Applications, 25(5): 135-145, May
2006.

[6] I. Pill, S. Semprini, R. Cavada, M. Roveri, R.
Bloem, A. Cimatti. Formal Analysis of
Hardware Requirements. International Journal of
Computer Systems, Science and Engineering,
20(1): 19-35, January 2005.

[7] H. Zheng, C. Myers, D. Walter, s. Little, T.
Yoneda. Verification of timed Circuits with
Failure Directed Abstractions. IEEE
Transactions of Computer-Aided Design of
Integrated Circuits and Systems, Vol.25, No.3,
pp403-412 (2006).

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 107

