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Abstract: This paper focuses on applications of a general methodology that we developed for solving two-point
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value problem in phase space. This method has implications in different fields as boundary value problems are
widely spread and we succeeded to develop an efficient algorithm. We illustrate its use to solve optimal control
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1 Introduction

One of the most famous two-point boundary
value problems in astrodynamics is Lambert’s prob-
lem, which consists of finding a trajectory in the two-
body problem which goes through two given points
in a given lapse of time. Even though the two-body
problem is integrable, no analytical solution has been
found to this problem so far, and solving Lambert’s
problem still requires one to solve Kepler’s equation,
which has motivated many papers since1650 [3]. For
a general Hamiltonian dynamical system, a two-point
boundary value problem is solved using iterative tech-
niques such as shooting and relaxation methods. The
shooting method [9] consists of choosing values for all
of the dependent variables at one boundary. These val-
ues must be consistent with any boundary conditions
for that boundary, but otherwise are initially guessed
randomly. After integration of the differential equa-
tions, we in general find discrepancies between the de-
sired boundary values at the other boundary. Then, we
adjust the initial guess to reduce these discrepancies
and reiterate this procedure again. The method pro-
vides a systematic approach to solving boundary value
problems, but suffers several inherent limitations. As
summarized by Bryson and Ho ( [2]p 214),

The main difficulty with this method is get-
ting started; i.e., finding a first estimate of
the unspecified conditions at one end that
produces a solution reasonably close to the
specified conditions at the other end. The

reason for this peculiar difficulty is that the
extremal solutions are often very sensitive
to small changes in the unspecified bound-
ary conditions.

To get rid of the sensitivity to small changes in ini-
tial guesses, techniques such as the multiple shooting
method [8] were developed. They consist of breaking
the time domain into segments and solving a bound-
ary value problem on each of these segments. In this
manner, nonlinear effects are limited over each seg-
ment, but on the other hand the size of the problem
is increased considerably. However, the choice of the
initial conditions still remains as the main hurdle to
successfully apply shooting methods to any kind of
problems.
Relaxation methods [10] use a different approach.
The differential equations are replaced by finite-
difference equations on a mesh of points that covers
the range of the integration. A trial solution con-
sists of values for the dependent variables at each
mesh point, not satisfying the desired finite-difference
equations, nor necessarily even satisfying the required
boundary conditions. The iteration, now called relax-
ation, consists of adjusting all the values on the mesh
so as to bring them into successively closer agree-
ment with the finite-difference equations and simul-
taneously with the boundary conditions. In general,
relaxation works better than shooting when the bound-
ary conditions are especially delicate or subtle. How-
ever, if the solution is highly oscillatory then many
grid points are required for accurate representation.
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Also, the number and positions of the required mesh
points are not knowna priori and must be adjusted
manually for each problem. In addition, if solutions
to the differential equations develop singularities, at-
tempts to refine the mesh to improve accuracy may
fail.
With the advent of computers, these two methods are
able to solve most of the two-point boundary value
problems. They may require substantial time to find
an appropriate initial guess and/or computer memory
to refine the mesh, but they often succeed. However,
there are problems for which these methods reach
their limits. For instance, the design of space missions
involving several spacecraft in formation requires one
to solve a large number of boundary value problems
for which the boundary conditions may in turn de-
pend on parameters. To reconfigure a formation ofN
spacecraft, there areN ! possibilities in general, that
is,N ! boundary value problems need to be solved. As
N increases, the number of boundary value problems
dramatically grows. Similarly, suppose that we plan to
reconfigure a spacecraft formation to achieve an inter-
ferometry mission. We may require the spacecraft to
be equally spaced on a circle perpendicular to the line
of sight they should observe. In that case, the final po-
sitions are specified in terms of the angle that indicates
the position of the spacecraft on the circle. In order to
find the value of the angle that minimizes fuel expen-
diture, infinitely many boundary value problems may
need to be solved. As a result, the algorithms men-
tioned above are no longer appropriate as they require
excessive computation and time. To address these
complex problems arising in spacecraft formation de-
sign, Guibout and Scheeres [6] developed a novel ap-
proach to solving boundary value problems. This ap-
proach outperforms traditional methods for spacecraft
formation design and was generalized in [7]. They
proved that it allows to formally solve any kind of
two-point boundary value problem at a cost of a sin-
gle function evaluation once generating functions are
known.

In this paper we analyze a variety of problems in
several fields and show that they can all be formulated
as Hamiltonian two-point boundary value problems.
Then we review the general methodology that we de-
veloped for solving two-point boundary value prob-
lems and explain in details how we build up a software
tool from it.

2 Hamiltonian two-point boundary
value problems
In this section, we explore a variety of problem

in several fields and show that they can formulate as

Hamiltonian two-point boundary value problems that
we solve using our algorithms.

2.1 Defintion
A Hamiltonian two-point boundary value prob-

lem is a problem that can be formulated as a Hamil-
tonian dynamical system whose initial conditions are
not completely known. For instance, we may know
the position at an initial time and at a later time but
have no knowledge of the initial velocity. In that case,
we cannot integrate the differential equations describ-
ing the system although the knowledge of the posi-
tion at two different times may be enough to uniquely
define the initial velocity. Finding the missing ini-
tial conditions is the key issue addressed by two-point
boundary value problems.

We now provide a more formal definition.

Definition 1 (Hamiltonian system). A system is
called Hamiltonian if there exists a smooth function
H(q, p, t) from R

n × R
n × R to R such that its dy-

namics can be described by equations of the form:

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
. (1)

H is called the Hamiltonian function,(q, p) is the
state vector that describes the phase space and Eqns.
(1) are known as Hamilton’s equations.

The formalism of Hamiltonian systems covers a
wide class of fields, from dynamical problems with
conservative forces to optimal control problems. In-
deed, any system with conservative forces may be for-
mulated as an Hamiltonian system (oftenq is the po-
sition andp the momentum) and the necessary condi-
tions for optimality transform an optimal control prob-
lem into an Hamiltonian problem (q is the state andp
is the co-state).

Consider a Hamiltonian functionH, two points
in phase space,X0 = (q0, p0) and X1 =
(q, p), and two partitions of(1, · · · , n) into two
non-intersecting parts,(i1, · · · , ip)(ip+1, · · · , in) and
(k1, · · · , kr)(kr+1, · · · , kn). A Hamiltonian two-
point boundary value problem is formulated as fol-
lows:

Definition 2. Given 2n coordi-
nates (qi1 , · · · , qip , pip+1

, · · · , pin) and
(q0k1

, · · · , q0kr
, p0kr+1

, · · · , p0kn
), find the re-

maining2n variables such that a particle starting at
X0 will reachX1 in T units of time.

The methodology that we developed allows us to
compute an analytic approximation of the solution of
any kind of two-point boundary value problems. In

Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006      175



other words, we are able to find two functions such
that:

(( pi1 , · · · , pip , qip+1
, · · · , qin),

(p0k1
, · · · , p0kr

, q0kr+1
, · · · , q0kn

)) =

(f( qi1 , · · · , qip , pip+1
, · · · , pin),

g(q0k1
, · · · , q0kr

, p0kr+1
, · · · , p0kn

)) (2)

We will see later thatf andg are (up to a sign) the
gradient of a generating function associated with the
phase flow transformation. But first, let us look at
some examples to illustrate the use of our approach
in several fields.

2.2 Finding periodic orbits
Although the search for periodic orbits is natu-

rally formulated as an initial value problem, this prob-
lem may be posed as a two-point boundary value prob-
lem.
Periodic orbits in a2n-dimensional Hamiltonian dy-
namical system are characterized by the following
equations:

q(T ) = q0 , (3)

p(T ) = p0 , (4)

whereT is the period of the orbit,(q0, p0) are the ini-
tial conditions at timet0 = 0 and(q(t), p(t)) verifies
Hamilton’s equations:

q̇ =
∂H

∂p
(q, p, t) , ṗ = −

∂H

∂q
(q, p, t) . (5)

In the most general case, the search for periodic or-
bits consists of solving the2n equations (3) and (4)
for the2n + 1 unknowns(q0, p0, T ). Simple methods
that solve this problem take a set of initial conditions
(q0, p0), and integrate Hamilton’s equations. If there
exists a timet = T such that Eqns. (3) and (4) are
verified, then a periodic orbit is found. Else, other
initial conditions need to be guessed. In the approach
we propose, instead of looking at the initial conditions
and the period as the only variables of the problem, we
suppose that the period,n initial conditions as well as
n components of the state vector at timeT are un-
knowns. Then the search for periodic orbits reduces
to solving the2n equations (3) - (4) for these2n + 1
unknowns.
If (q(T ), q0, T ) are taken to be the2n + 1 unknowns,
then the search for periodic orbits consists of solv-
ing the 2n equations (3)-(4) for(q(T ), q0, T ). For
instance, let us find all periodic orbits of a given pe-
riod. In other words,T is given and we need to find
(q(T ), q0) such thatq(T ) = q0 and p(T ) = p(0).

This is a two-point boundary value problem with con-
straints that can be solved using the approach pre-
sented in this paper. Combining the assumptions that
q(T ) = q0 andp(T ) = p0 together with the knowl-
edge of the functionsf and g defined asp(T ) =
f(q, q0, T ) andp0 = g(q, q0, T ), we obtain:

f(q(T ) = q0, q0, T ) − g(q(T ) = q0, q0, T ) = 0 , (6)

p = p0 = f(q(T ) = q0, q0, T ) . (7)

Hence, the search for all periodic orbits of a given pe-
riod is reduced to solvingn equations (6) forn vari-
ables, theq0’s, and then evaluaten equations (7) to
compute the corresponding momenta.2n equations
still need to be solved, but nown of them are decou-
pled. Most importantly, oncef andg are known ana-
lytically, no additional integration is required.

We now illustrate the power of the proposed
method to find periodic orbits of nonlinear systems.
We address a non-trivial example : we study periodic
orbits about the Libration pointL2 in the normalized
Hill three-body problem.
The Hill three-body problem is a three-body problem
in which three main assumptions are made: 1) One of
the three bodies has negligible mass compared to the
other two-bodies. 2) One of the two massive bodies
is in circular orbit about the other one. 3) One of the
two massive bodies has larger mass than the other one.
These hypothesis hold to study the motion of a space-
craft under the influence of the Sun and the Earth for
example. Under these assumptions, the normalized
Lagrangian for this system is

L(q, q̇) =
1

2
(q̇2

x+q̇2
y)+

1
√

q2
x + q2

y

+
3

2
q2
x−(q̇xqy−q̇yqx)

where(qx, qy) = (x, y). This problem has2 equi-
librium points, L1 and L2 whose coordinates are

L1(−
(

1
3

)1/3
, 0) andL2(

(

1
3

)1/3
, 0) .

In order to apply the method presented above to find
periodic orbits we need to compute the generating
functions (thef and g functions). Using our algo-
rithm we are able to find a polynomial approximation
of these functions up to order5 (the meaning of this
approximation will be given later). We now search all
periodic orbits of a given periodT = 3.0345. To solve
this problem we use the generating functions which
defines two equations with two unknowns (the phase
space is of dimension4) that can be solved graphi-
cally. In Fig. 1, we plot the solutions to each of
these two equations and then superimpose them to
find their intersection. The intersection corresponds
to the set of points that belongs to periodic orbits of
period T . We observe that the intersection is com-
posed of a circle and two points whose coordinates
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are(qx, qy) = (−0.0603795,±0.187281). The circle
is obviously a periodic orbit but the two points are not
equilibrium points, and rather correspond to out-of-
plane periodic orbits1.

(a) Plot of the solution to
the first equation defined
by Eq. (6)

(b) Plot of the solution to
the second equation de-
fined by Eq. (6)

(c) Superposition of the two sets
of solutions

Figure 1: Periodic orbits for the nonlinear motion
about a Libration point

By plotting the intersection for different periods
T , we generate a map of a family of periodic orbits
around the Libration point. In Fig. 2 we represent the
solutions to Eq. (6) fort = 3.033 + 0.0005n , n ∈
{1 · · · 10}. For t = 3.033 (which is less than the pe-
riod of periodic orbits in the linearized system), the in-
tersection only contains the origin, which is why there
are only9 periodic orbits shown around the origin. We
note that at larger values ofx2 + y2 the curves do not
overlay precisely, indicating that higher order terms
are needed in the analytic approximation of the solu-
tion to the two-point boundary value problem.

2.3 A multi-task mission about the Earth
Another interesting problem to solve is a multi-

task mission. We consider a spacecraft formation
about an oblate earth that must achieve five missions
over a one month period. For each mission the for-
mation must be in a given configurationCi that has
been specified beforehand, and we wish to minimize

1We point out that these points do not lie in the domain of
convergence of our method and are only consequences of our ap-
proximation of the dynamics.

(a) Plot of the solution
to the first equation de-
fined by Eq. (6) fort =

3.033 + 0.0005n n ∈
{1 · · · 10}

(b) Plot of the solution to
the second equation de-
fined by Eq. (6) fort =

3.033 + 0.0005n n ∈
{1 · · · 10}

(c) Superposition of the
two sets of solutions

Figure 2: Periodic orbits for the nonlinear motion
about a Libration pointthe overall fuel expenditure. We will see that this
problems naturally formulates as a two-point bound-
ary value problem that can be easily solved using the
approach developped in this paper.
The motion of a satellite under the influence of the
Earth modeled by an oblate sphere (J2 andJ3 gravity
coefficients are taken into account) in the fixed coordi-
nate system(x, y, z) whose origin is the Earth center
of mass is described by the following Hamiltonian:

H =
1

2
(p2

x + p2
y + p2

z) −
1

√

x2 + y2 + z2
[1−

R2

2r2
0(x

2 + y2 + z2)

(

3
z2

x2 + y2 + z2
− 1

)

J2−

R3

2r3
0(x

2 + y2 + z2)2

(

5
z3

x2 + y2 + z2
− 3z

)

J3

]

,

where

GM = 398600.4405 km3s−2 , R = 6378.137 km ,

J2 = 1.082626675 · 10−3 , J3 = 2.532436 · 10−6 ,

and all the variables are normalized. Distances are
normalized byr0, the radius of the trajectory at the
initial time, and the time is normalized by

√

r3
0/GM .

We consider a “reference” trajectory whose state is
designated by(q0, p0) and study the relative motion
of spacecraft with respect to it. The reference trajec-
tory is chosen to be highly eccentric and inclined, but
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any other choice could have been considered. At the
initial time its state is:

q0
x = rp , p0

x = 0 kms−1 ,

q0
y = 0 km , p0

y =
√

GM
1

2
(ra+rp)

√

ra

rp
cos(α) kms−1 ,

q0
z = 0 km , p0

z =
√

GM
1

2
(ra+rp)

√

ra

rp
sin(α) kms−1 ,

α = π
3 rad , rp = 7, 000 km , ra = 13, 000 km .

Without the J2 and J3 gravity coefficients the ref-
erence trajectory would be an elliptic orbit with ec-
centricity e = 0.3, inclination i = π/3 rad, ar-
gument of perigeeω = 0, longitude of the ascend-
ing nodeΩ = 0, semi-minor axisrp = 7, 000 km,
semi-major axisra = 13, 000 km and of period

tp = 2π

√

1
23

(ra+rp)3

r3
p

sec ≈ 2 hours 45 min. The

Earth oblateness perturbation causes secular drifts and
short terms oscillations in the orbital elements.
We consider four imaging satellites flying in forma-
tion about the reference trajectory. We want to plan
spacecraft maneuvers over the next month knowing
that they must observe the Earth, i.e., must be in a
given configurationCi at the following instants (cho-
sen arbitrarily for our study):

t0 = 0 , t1 = 5 d 22 h , t2 = 10 d 20 h ,
t3 = 16 d 2 h , t4 = 21 d 14 h , t5 = 26 d 20 h .

Define the local horizontal by the unit vectors(ê1, ê2)
such that̂e2 is alongr0 × v0 andê1 is alongê2 × r0.
At everyti, the configurationCi is defined by the four
following relative positions (or slots):

q1 = 700 m ê1 , q2 = −700 m ê1 ,
q3 = 700 m ê2 , q4 = −700 m ê2 .

(8)

Note that atti, q1 is in front of the reference state (in
the local horizontal plane),q2 is behind,q3 is on the
left andq4 is on the right (see Fig. 3). At eachti, there
must be one spacecraft per slot and we want to deter-
mine the sequence of reconfigurations that minimizes
the total fuel expenditure (other cost functions such
as equal fuel consumption for each spacecraft may be
considered as well). For the first mission, there are
4! configurations (number of permutation of the set
{1, 2, 3, 4}). For the second mission, for each of the
previous4! configurations, there are again4! configu-
rations, that is a total of4!2 possibilities. Thus for5
missions, there are4!5 = 7, 962, 624 possible config-
urations.

In this example, we assume impulsive controls
that consist of impulsive thrusts applied atti∈[0,5]. For
each of the four spacecraft, we need to compute the

Earth

Reference trajectory

1

4

2

3

1
4

2
3

1

4
2

3

1
4

2

3

1
4

2
3

1

4
2

3

t
00

t
2

t
5

t
3

t
4

t
1

C
0

C
2

C
1

C
3

C
4

C
5

Figure 3: At eachti, spacecraft must be in the config-
urationCi

velocity atti so that the spacecraft moves to its posi-
tion specified atti+1 under gravitational forces only.
As a result, we must solve5 · 4! = 120 position to po-
sition boundary value problems (given two positions
at ti andti+1, we need to compute the associated ve-
locity). Using the knowledge of the functionsf and
g, this problem can be handled at the cost of only120
function evaluations. Then, we need to evaluate the
fuel expenditure (sum of the norm of all the required
impulses, assuming zero relative velocities at the ini-
tial and final times) for all the permutations (there are
7, 962, 624 combinations) to find the sequence that
minimizes the cost function. Fig. 4 represents the
number of configurations as a function of the values
of the cost function. We notice that most of the con-
figurations require at least three times more fuel than
the best configuration, and less than6% yield values
of the cost function that are less than twice the value
associated with the best configuration. The cost func-
tion for the optimal sequence of reconfigurations is
0.00644 km ·s−1 whereas it is0.0396 km ·s−1 in the
least optimal design.

6.44 15.09 22.64 30.18 37.73

502,940

1,027,384

1,979,581

4,452,719*10
5

m/s

Figure 4: Number of configurations as a function of
the value of the cost function

We may verify,a posteriori, if the solutions found
meet the mission goals, i.e., if the order4 approxima-
tion of the dynamics is sufficient to simulate the true
dynamics. Explicitly comparing the analytical solu-
tion with numerically integrated results shows that the
spacecraft are at the desired positions at everyti with
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a maximum error of1.5 · 10−8 km.

2.4 The deployment problem in the Hill
three-body problem

We come back to the Hill problem considered be-
fore for the study of periodic orbits. We now consider
several spacecraft atL2 at the initial time and solve
the deployment problem. In other words, we want to
find the optimal control laws that drive the formation
from L2 to a given configuration att = T . We assume
continuous thrusts and no thrust constraints. Thus, for
each of the spacecraft, we need to solve an optimal
control problem formulated as:

min
U=(ux,uy)

J = min
U=(ux,uy)

1

2

∫ t=T

t=0
(u2

x + u2
y)dt , (9)

subject to the dynamics:

∂L

∂q
(q, q̇) −

d

dt

∂L

∂q̇
(q, q̇) = U , (10)

and the boundary conditions:

X(t = 0) = XL2
= (3−1/3, 0, 0, 0) , X(t = T ) = XT ,

whereX = (qx, qy, q̇x, q̇y) andU = (ux, uy). Neces-
sary conditions for optimality can be found from Pon-
tryagin’s maximum principle:

Ẋ =
∂H

∂P
, Ṗ = −

∂H

∂X
,

∂H

∂U
= 0 , (11)

whereP = (p1, p2, p3, p4) and

H(X, P, U) = P T Ẋ +
1

2
u2

x +
1

2
u2

y .

Then, from ∂H
∂U = 0, we find the optimal control

feedback law: ux = −p3 , uy = −p4. We sub-
stitute U = (ux, uy) into H to obtainH̄(X, P ) =
H(X, P, U(X, P )). Thus, the necessary conditions
for optimality now define aHamiltonianposition to
position boundary value problem that can be solved
usingF1:

Ẋ =
∂H̄

∂P
, Ṗ = −

∂H̄

∂X
, X(0) = XL2

, X(T ) = XT (12)

In Fig. 5(a) and 5(b), we plot the optimal control
trajectories and the norm of the optimal control laws
for different final positionsXT on a circle of radius
r = 0.05 (10, 700 km in the Earth-Sun system) and
a transfer time oft = 2.5 (i.e., about145 days in
the Earth-Sun system). We observe that some val-
ues of the final position requires less fuel, they cor-
respond toXT = r cos(θ) + r sin(θ) where θ =

{19π/32, 51π/32}. Similarly, we may vary the trans-
fer time. In Fig. 5(c), we plot the optimal trajectories
for T ∈ {0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1} (i.e., from6
to 290 days). AsT increases, the trajectory wraps
aroundL2 so that the spacecraft takes advantage of
the geometry of the Libration point.

x

y

(a) Optimal trajec-
tories

t

|u|

(b) Norm of the op-
timal control laws

x

y

(c) Optimal trajec-
tories

Figure 5: The deployment problem
In this manner, we can explore the best deployment
sequence. Depending on the final configuration ge-
ometry (e.g., the spacecraft must be equally spaced
on a circle of radiusr) and mission specifications, we
are able to choose the optimal transfer time and fi-
nal configuration to minimize the fuel expenditure by
evaluating a set of functions.

3 General methodology to solve
Hamiltonian two-point boundary
value problems
In this section, we review the method developed

by Guibout and Scheeres [5, 7] for solving Hamilto-
nian two-point boundary value problems. Then we
will focus on the algorithm that effectively allows to
compute the analytic solutions to two-points boundary
value problems. Trajectories of Hamiltonian systems
verifies Hamilton’s equations 1 but can also be char-
acterized by the following variational principle:

Theorem 3 (Modified Hamilton’s principle). Criti-
cal points of

∫ t1
t0

(〈p, q̇〉 − H)dt in the class of paths
γ : R → R

n×R
n whose ends lie in the n-dimensional

subspacesq = q0 at t = t0 and q = q1 at t = t1
correspond to trajectories of the Hamiltonian system
whose ends areq0 at t0 andq1 at t1.

Proof. We proceed to the computation of the varia-
tion.

δ

∫

γ
(〈p, q̇〉 − H)dt =

∫

γ

(

q̇iδpi + piδq̇i −
∂H

∂qi
δqi −

∂H

∂pi
δpi

)

dt = [piδqi]
t1
t0

+

∫

γ

[(

q̇i −
∂H

∂pi

)

δpi −

(

ṗi +
∂H

∂qi

)

δqi

]

dt .
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Therefore, since the variation vanishes at the end
points, the integral curves of Hamilton’s equations are
the only extrema.

We now introduce the concept of canonical trans-
formation, a class of coordinate transformations that
preserves the Hamiltonian structure of the system.

Definition 4. A smooth mapf : R
2n×R → R

2n×R is
a canonical transformation from(q, p, t) to (Q, P, t)
if and only if:

1. f is a diffeomorphism,

2. f preserves the time, i.e., there exists a function
gt such thatf(x, t) = (gt(x), t),

3. Critical points of
∫ t1
t0

(

〈P, Q̇〉 − K(Q, P, t)
)

dt

correspond to trajectories of the Hamiltonian
system, whereK(Q, P, t) is the Hamiltonian
function expressed in the new set of coordinates.

We consider a canonical transformationf :
(q, p, t) 7→ (Q, P, t) and a Hamiltonian system de-
fined byH. Along trajectories, we have by definition:

δ

∫ t1

t0

(

n
∑

i=1

piq̇i − H(q, p, t)

)

dt = 0 , (13)

δ

∫ t1

t0

(

n
∑

i=1

PiQ̇i − K(Q, P, t)

)

dt = 0 . (14)

From Eqns. (13) - (14), we conclude that the in-
tegrands of the two integrals differ at most by a total
time derivative of an arbitrary functionF :

∑

i

pidqi − Hdt =
∑

j

PjdQj − Kdt + dF . (15)

Such a function is called a generating function for
the canonical transformationf and is,a priori, a func-
tion of both the “old” and the “new” variables and
time. The two sets of coordinates being connected
by the2n equations, namely,f(q, p, t) = (Q, P, t),
F can be reduced to a function of2n + 1 variables
among the4n + 1. Hence, we can define4n gen-
erating functions that haven “old” variables andn
“new”. Among these are the four kinds defined by
Goldstein [4],F1(q, Q, t), F2(q, P, t), F3(p, Q, t) and
F4(p, P, t). In this paper, we focus on the generat-
ing function of the first kind,F1 as it is the one used
to solve the previous examples. In other words, we
assume that(q, Q) are independent variables. Then,

from dF1 = ∂F1

∂q dq + ∂F1

∂Q dQ + ∂F1

∂t , Eqn. (15) sim-
plifies to the following vector equation:

(p−
∂F1

∂q
)dq −Hdt = (P +

∂F1

∂Q
)dQ−Kdt +

∂F1

∂t

Hence, since(q, Q, t) are independent variables, we
obtain:

q = ∂F1

∂p (q, Q, t) , Q = −∂F1

∂Q (q, Q, t) ,
∂F1

∂t + H(q, ∂F1

∂p , t) = K(Q,−∂F1

∂Q , t) .
(16)

Let us particularize Eqns. (16) for the canonical trans-
formation induced by the inverse of the phase flow
(a proof that this transformation is canonical can be
found in [1]). Such a transformation maps the state of
the system at timet to its state at the initial time while
preserving the time. Thus, it maps the system to a triv-
ial one with constant Hamiltonian function that can be
chosen to be0. The associated generating functionF1

verifies Eqns. (16) where(Q, P ) now denotes the ini-
tial state(q0, p0) andK = 0:

p =
∂F1

∂q
(q, q0, t) , p0 = −

∂F1

∂q0
(q, q0, t) , (17)

∂F1

∂t
+ H(q,

∂F1

∂p
, t) = 0 . (18)

Given two positionsq0 andq, and a transfer timeT ,
we immediately notice that Eqns. (17) solves the two-
point boundary value problem that consists of going
from q0 to q in T units of time. Comparing the defi-
nition of f andg in the above examples with Eq. 17
yields:

f =
∂F1

∂q
(q, q0, t) (19)

g = −
∂F1

∂q0
(q, q0, t) (20)

This remark is of prime importance since it provides
us with a very general technique for solving Hamil-
tonian position to position boundary value problems.
However, this approach relies on knowledge ofF1. In
the next section, we develop an algorithm for comput-
ing this function.

4 Computing the generating func-
tions
The Hamilton-Jacobi theory provides us with a

direct approach for computing the generating func-
tions. Indeed, it tells us that they are solutions of
the Hamilton-Jacobi equation (Eqn. (18)). This is a
partial differential equation that is difficult to solve in
general. However, the Hamiltonian function for de-
scribing the relative motion has a particular structure
that enables us to solve this differential equation.
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4.1 Relative motion

Consider a Hamiltonian system with Hamiltonian
function H(q, p, t). Let (q0

0, p
0
0) and(q1

0, p
1
0) be two

points in phase space such thatq1
0 = q0

0 + ∆q0 , p1
0 =

p0
0 +∆p0, where(∆q0, ∆p0) is small enough to guar-

anty the convergence of the Taylor series in Eqn. (25).
We denote by(qi, pi) the trajectory with initial condi-
tions(qi

0, p
i
0), i.e.,

q1 = q(q1
0, p

1
0, t) , p1 = p(q1

0, p
1
0, t) , (21)

q0 = q(q0
0, p

0
0, t) , p0 = p(q0

0, p
0
0, t) . (22)

and we defineXh =

(

∆q
∆p

)

the relative state vector

by:

X1 = X0 + Xh , (23)

whereXi =

(

qi

pi

)

. For convenience we shall call

(q0, p0) the reference trajectory and(q1, p1) the dis-
placed trajectory .

Using our previous notation, Hamilton’s equa-
tions for the displaced trajectory reads:

Ẋ0 + Ẋh = J∇H1 . (24)

We expand the right hand side of Eqn. (24) about
the reference trajectoryX0, assuming(∆q, ∆p) small
enough for convergence of the series:

∇H(q1, p1, t) = ∇H(q0, p0, t)

+

(

∂2H
∂q2 (q0, p0, t)∆q + ∂2H

∂q∂p(q0, p0, t)∆p
∂2H
∂q∂p(q0, p0, t)∆q + ∂2H

∂p2 (q0, p0, t)∆p

)

+ · · ·

Substituting this into Eqn. (24) yieldṡXh = J∇Hh,
where

Hh(Xh, t) =

∞
∑

p=2

p
∑

i1,··· ,i2n=0
i1+···+i2n=p

1

i1! · · · i2n!

∂pH

∂qi1
1 · · · ∂qin

n ∂p
in+1

1 · · · ∂pi2n
n

(q0, p0, t)Xh
1

i1
. . . Xh

2n
i2n

Thus, the dynamics of a particle relative to a
known trajectory is Hamiltonian with a Hamiltonian
function Hh(Xh, t) = Hh(∆q, ∆p, t). The coeffi-
cients of the Taylor series1i!j!

∂i+jH
∂qi∂pj (q0, p0, t) are time

varying quantities and are easily evaluated for any
Hamiltonian once the reference trajectory is known.

4.2 Algorithm
We found that the Hamiltonian describing the

dynamics of two particles relative to each other is
a power series in its spatial variables, with time-
dependent coefficients. At first glance, the associ-
ated Hamilton-Jacobi equation may appear impracti-
cal. However, if we truncateHh, a closed-form solu-
tion for the generating functions can be found. In this
section we review the solution procedure. We refer
to [5] for additional details and a study of the conver-
gence properties of our algorithm.

We assume thatF1 can be expressed as a Taylor
series about the reference trajectory in its spatial vari-
ables.

F1(y, t) =
∞

∑

q=2

q
∑

i1,··· ,i2n=0
i1+···+i2n=q

1

i1! · · · i2n!

fq,i1,··· ,i2n
(t)yi1

1 · · · yi2n

2n , (25)

wherey = (∆q, ∆q0). We substitute this expression
in the Hamilton-Jacobi equation (Eqn. (18), withH =
Hh). The resulting equation is an ordinary differential
equation that has the following structure:

P (y, fp,r
q,i1,··· ,i2n

(t), ḟp,r
q,i1,··· ,i2n

(t)) = 0 , (26)

where P is a series iny with time dependent co-
efficients that are functions offq,i1,··· ,i2n

(t) and
ḟq,i1,··· ,i2n

(t). Eqn. (26) holds for ally if and only
if all the coefficients ofP are zero. In this manner, we
transform the ordinary differential equation (26) into a
set of ordinary differential equations whose solutions
are the coefficients of the generating functionF1.

This approach provides us with a closed form ap-
proximation of the generating functions. However,
there are inherent difficulties as generating functions
may develop singularities which prevent the integra-
tion from going further (see [1, 7] for more details on
singularities). Techniques that rely on the Legendre
transformation have been developed [5] to bypass this
problem but have a cost in terms of computation.

An alternative approach for computingF1 has
been explored in [5]. We present the main ideas
of this approach as in general we combine both
methods to increase performance. We suppose that
∆q(∆q0, ∆p0, t) and ∆p(∆q0, ∆p0, t) can be ex-
pressed as series in the initial conditions(∆q0, ∆p0)
with time dependent coefficients. We truncate the
series to orderN and insert these into Eqn. (1).
Hamilton’s equations reduce to a series in(∆q0, ∆p0)
whose coefficients depend on the coefficients of
the series∆q(∆q0, ∆p0, t) and∆p(∆q0, ∆p0, t) and
their time derivatives. By balancing terms of the same
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order, we transform Hamilton’s equations into a set
of ordinary differential equations whose variables are
the coefficients defining∆q and∆p as a series in∆q0

and∆p0. For linear systems, this approach recovers
the state transition matrix. Then, a series inversion
of the phase flow provides us with the gradient of the
generating functions that can be integrated to find the
generating functions.

The main advantage of this approach is that the
phase flow is never singular, therefore the ordinary
differential equations are always well-defined. How-
ever, this method requires us to solve more equations
than the previous method and provides us with the
value ofF1 at a given time only (the time at which
we perform the series inversion).

In practice, we use a “combined” algorithm. The
alternative approach is used to compute the phase flow
over a long time span. Then, we compute the value of
F1 at a time of interest,t1, and solve the Hamilton-
Jacobi equation aroundt1. For both examples, we
compute the first four terms in the series expansion of
F1. We will see that they provide an accurate picture
of the nonlinear dynamics about the reference trajec-
tory.

5 Conclusion

We have shown that the knowledge of an analyt-
ical solution to two-point boundary value problem al-
lows us to solve difficult problems in a wide range of
fields. We linked such a solution with the gradient
of the generating functions associated with a specific
canonical transformation, the phase flow. Such a de-
scription of the phase space is superior in many ways
to the traditional approach based on the initial value
problem. Then we showed how to implement this
novel approach underMathmatica c©. The algorithm
we developped is efficient and robust. It allows to get
around singularities and to obtain a semi-analytic de-
scription of the phase flow of complex dynamical sys-
tems.
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