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Abstract: - Time-independent Onsager-type equations are written for a gas diffusing in a slab of porous 
medium subjected to temperature and pressure gradients. They are solved to obtain temperature, density and 
pressure profiles inside the slab. Density distribution of gas molecules inside the slab is seen to depend 
strongly on both temperature and pressure gradients, with a close interplay between the two. Dimensionless 
particle current and heat flow are computed as a function of diffusion coefficients and boundary conditions. 
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1   Introduction 
The motion of fluids through porous media is often 
studied with equations derived from, or akin to, what 
is known in transport theory as diffusion 
approximation [1]. These equations can be arrived at 
with several procedures, but they share the common 
feature that motion is determined exclusively by 
density gradients; in other words, no account is taken 
of, or provision made for, the temperature gradients 
that may exist, or come into being because of the 
transport processes. However, and this is of special 
significance in the case of gases, transport 
phenomena are driven by density and temperature 
gradients alike, and neglect of the latter may lead to 
significant errors. In the present work, a method is 
presented that is based on an Onsager equations 
approach to the problem. Onsager equations are, 
originally, a phenomenological description of non-
equilibrium thermodynamics [2]: but once they are 
written down in terms of gradients and coefficients, 
these latter still need to be determined for the 
equations to be useful. This can perhaps be done 
experimentally, or by yet other means: however, it is 
possible to derive them from kinetic theory, making 
suitable approximations on the distribution function 
and then making use of Boltzmann equation 
[3,4,5,6]. In this sense, they become a rigorous result 
of kinetic theory, and a useful tool in those physical 
instances in which legitimate use can be made of 
them, allowance being made for the assumptions and 
limitations introduced in their derivation. 
The situation considered in the present work is as 
follows: a slab of porous material, having breadth 
and length large enough compared to thickness that 
the problem may be viewed as one-dimensional, is in 
contact with a gas. The gas has known temperature 

and pressure  and  on one side, and   and 

 on the other side, as presented in Fig. 1. The gas 
diffuses through the porous material under the effect 
of density and temperature gradients: it is desired to 
determine density, temperature and pressure profiles 
once a steady state is reached. Under these 
conditions, pointwise thermal equilibrium is assumed 
between the diffusing gas and the porous medium. 
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Fig.1: problem geometry 

 
This is possibly the simplest and most 
straightforward problem that can be posed: however, 
despite its simplicity, considerable insight can be 
gained from its solution. Furthermore, it may 
represent quite accurately many real instances. 
Density profiles, in particular, may be of 
considerable interest in technological processes 
where porous materials are treated with gaseous 
substances for any purpose where the density of gas 
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molecules, or perhaps its distribution and uniformity, 
have a bearing on the success of the whole process 
[7]. 
As is customary in transport theory, interaction 
between gas molecules and diffusing medium will be 
described through cross sections. To this end some 
model, accurate enough but mathematically treatable 
enough, needs to be thought of to describe the porous 
medium. In the following the so called rigid sphere 
model will be assumed for the cross sections, and the 
medium will be thought of as composed of grains of 
varying size, as depicted schematically in Fig. 2, all 
interacting with gas molecules as rigid spheres. Also, 
grains will be very massive compared to the 
molecules of the gas, so that scattering is isotropic in 
the laboratory reference frame. Under such 
conditions, the transport cross section is independent 
of molecule velocity. Different sizes will entail 
different microscopic cross sections for the grains, 
yet they can all be compounded into one 
macroscopic cross section , independent of 
velocity, with the usual methods of kinetic theory. 

0Σ

 

 
Fig.2: porous medium model 

 
As will appear clearly in the following, the exact 
value of this cross section is not needed to solve the 
problem as was proposed, its being a constant 
suffices to determine the requested profiles. 
However, to calculate particle flow and heat flow the 
correct value would be required, albeit only as a 
multiplicative constant. Only the expressions for 
those two latter quantities will be written here, as the 
aforementioned constant will not be determined 
within the scope of this work. 
 
 
2   Problem Formulation 
As discussed above, in references [4,5,6] Onsager-
type transport equations were derived from 

Boltzmann equation;  transport coefficients can then 
be determined given the appropriate cross sections. 
The end results will be used here, particularized to 
the present case of slab symmetry: the interested 
reader is referred to the references for further details.   
In Onsager equations, particle current  and flow 
of heat 

( )xJ
( )xQ  are given in terms of temperature and 

density gradients and of temperature-dependent 
transport coefficients. 
Onsager equations, for the case at hand, can be 
written [4,5,6]  

dx
)x(dT)T(*)x(n
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Here and in the following, temperature will be in 
energy units (i.e., T will be written for , where 

 is Boltzmann constant). Onsager equation can 
be supplemented with conditions on the flows of 
molecules and heat, i.e., the continuity and energy 
conservation equations. In the present case where no 
absorption is considered and thermal equilibrium 
between gas and medium is assumed, one obtains: 
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The coefficients appearing in Eq.s 1-4 being as 
follows: 
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Once the parameters Eq,s (5-8) are inserted in 
Onsager equations, the system of equations Eq.s (1-
4) can be reworked to eliminate J and Q; the third 
equation ensures that J is constant everywhere, 
constant that will be denoted  in the following. cJ
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Two equations can be obtained containing only n and 
T 
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Inserting Eq. (11) into Eq. (10) an equation for T 
alone is obtained: 
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The general solution of Eq.s (12) is found as 
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Eq. (11) yields the density: albeit the number density 
is the more fundamental quantity, pressure is of more 
practical usage, and recalling that , nTp =
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Eq.s (13) and (14) contain 4 integration constants to 
be determined from boundary conditions: a, ,  
and . Here, referring to the case depicted in Fig. 
1, solutions can be written as 
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2.1 Self-similar solution 
The solution can be recast in dimensionless form, to 
obtain a self-similar solution. To this end 
dimensionless variables will be defined as follows: 
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With these positions, the following dimensionless 
equations can be written 
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Dimensionless particle and heat flows as well may 
be defined introducing the following quantities: 
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the dimensionless flows can then be calculated as 
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3   Results 
Fig.s 3 to 10 present plots of dimensionless 
temperature, pressure and density across the porous 
medium, as a function of dimensionless position x~, 
for several values of LT~  and Lp~ . The dimensionless 
flows, for the same combinations of temperature and 
pressure jumps as in the figures,  are shown in Table 
1. 
 
 

Table 1: dimensionless flows 

LT~  Lp~  J~  Q~  

0.1 0.684 0.968 0.1 
0.2 0.368 0.937 
0.2 0.552 0.911 0.2 
0.5 -0.118 0.776 
0.2 0.717 0.859 0.5 
0.5 0.293 0.646 

0.8 0.2 0.776 0.821 
1.0 0.2 0.800 0.800 
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     Fig. 3: T~ , p~  and n~  vs. x~ : case 1.0T~L = , 1.0p~L =  

 

     Fig. 4: T~ , p~  and n~  vs. x~ : case 1.0T~L = , 2.0p~L =  

 

     Fig. 5: T~ , p~  and n~  vs. x~ : case 2.0T~L = , 2.0p~L =  

 

 

     Fig. 6: T~ , p~  and n~  vs. x~ : case 2.0T~L = , 5.0p~L =  

 

     Fig. 7: T~ , p~  and n~  vs. x~ : case 5.0T~L = , 2.0p~L =  

 

     Fig. 8: T~ , p~  and n~  vs. x~ : case 5.0T~L = , 5.0p~L =  
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     Fig. 9: T~ , p~  and n~  vs. x~ : case 8.0T~L = , 2.0p~L =  

 

     Fig. 10: T~ , p~  and n~  vs. x~ : case 1T~L = , 2.0p~L =  

 
4   Conclusions 
As can be gathered from the results presented, 
density profiles are very sensitive to the pressure and 
temperature ratios at the two sides of the slab. This 
suggests the possibility that gas density be tuned 
somehow at will by a cunning choice of temperatures 
and pressures on the boundaries. This might be of 
technical interest where control of the density is 
meaningful to successful treatments. On the contrary, 
the trends of temperature and pressure profiles do not 
exhibit any similar variability. It must be underlined 
that neglecting the compound effect of temperature 
and pressure gradients (as done, for instance, in the 
diffusion equation and related approximations) 
would lead to overlook completely the effect of 
temperature-driven diffusion with the result that 
density profiles would be markedly inaccurate. 
Finally, one word on distribution functions: were 
they desired, as they may become of use in 
investigating the chemistry of reactions (particularly 
threshold reactions) between the gas and the 

medium, they are easily determined within the 
present method, and with the same level of 
approximation. 
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