Proceedings of the 4th WSEAS Int. Conference on Electromagnetics, Wireless and Optical Communications, Venice, Italy, November 20-22, 2006 163

Software Interface for Pocket PC Based Mobile Telephony

MIRCEA POPA', ANCA SORANA POPA?, HORIA CIOCARLIE’
'3Computer and Software Engineering Department
*Department of Mechatronics
“Politehnica” University of Timisoara
No. 2, Piata Victoriei, 300006 Timisoara
ROMANIA

Abstract: - The widespread of the mobile communication is obvious in our days. More and more mobile devices are
used in different domains: pagers, mobile phones, Pocket PCs etc. Pocket PC is a mobile computer included in the
category of Personal Digital Assistant (PDA). It accomplishes all the functions of an organizer (address list, calendar,
meeting list etc.) plus other more complex applications. An advanced version of a Pocket PC is the Pocket PC Phone
Edition. Examples of models are: XDA and MDA. It is a Pocket PC plus mobile telephony capabilities. The need of
connecting together more and more mobile devices and particularly the Pocket PCs to different networks (GSM,
GPRS) became urged. The paper presents a complex software interface for the mobile telephony hardware module of
the Pocket PC Phone Edition. The applications offer facilities such as: navigation in contacts data bases from the
device and from the SIM card, sending SMSs to contacts from the data bases, indication if SMSs are received,
visualization of all the received, missed or sent from the device calls, receiving and sending phone calls. A very simple

and intuitive graphical user interface was developed.

Key-Words: - mobile communication, Pocket PC, mobile telephony, SMS, telephony services, class diagram

1 Introduction

The widespread of the mobile communication is obvious

in our days. More and more mobile devices are used in

various domains: pagers, mobile phones, Pocket PCs etc.

Pocket PC, [1], is a mobile computer included in the
category of Personal Digital Assistant (PDA). It
accomplishes all the functions of an organizer (address
list, calendar, meeting list etc.) plus other more complex
applications such as: text editor, data base, mathematical
operations, clock, data transfer with a PC etc. They run
an operating system such as Windows CE or Palm OS.
There are many software applications running on PCs
for Pocket PCs, [2].

An advanced version of a Pocket PC is the Pocket PC
Phone Edition. Examples of models are: XDA and
MDA. It is a Pocket PC plus mobile telephony
capabilities. They have support for GSM through CSD
(Circuit Switched Data), GPRS (General Packet Radio
Service) connection, support for receiving and
transmitting phone calls and SMSs etc. They have also
extension possibilities using different solutions:

- Compact Flash cards, which offer: external memory,
Wireless Ethernet (802.11b) network, GSM or
GPRS modems, GPS (Global Positioning System)
module, Radio module etc.;

- PCMCIA cards for connecting modules such as
modems, network cards, wireless accessories etc.;

- SD (Secure Digital) card and

- Bluetooth support.

The need of connecting together more and more
mobile devices and particularly the Pocket PCs to
different networks (GSM, GPRS) became urged.

The paper presents a complex software interface for
the mobile telephony hardware module of the Pocket PC
Phone Edition. This software appeared from the need of
a practical and a performing tool for the mobile
telephony capabilities of a Pocket PC. The application
offer facilities such as: navigation in contacts data bases
from the device and from the SIM card, sending SMSs to
contacts from the data bases, indication if SMSs are
received, visualization of all the calls received, missed or
sent from the device, receiving and sending phone calls.
A very simple and intuitive graphical user interface was
developed.

The next section presents similar work, the third
section details the developed software and the last
section outlines the conclusions.

2 Related Work

The mobile communication and particularly the Pocket
PC’s mobile communication were approached in
different papers.

Reference [3] describes an application in which Palm
(or Pocket PC) computers are used in the d-learning
process. With the evolution of the mobile devices and
technologies the d-learning process evaluated to e-
learning and then to m-learning (mobile learning). The

Proceedings of the 4th WSEAS Int. Conference on Electromagnetics, Wireless and Optical Communications, Venice, Italy, November 20-22, 2006 164

Palm devices are connected to the communication media do not integrate more services. Fig. 1 shows this
using infrared channels. situation in a graphical representation.

Another application based on mobile technology is
described in [4]. A security manager was built to
remotely monitor buildings for intrusions. PDAs are
used as front-end devices.

Reference [5] shows that Web information is not yet
as accessible from PDAs as from desktop computers. A
mechanism for Web directory navigation for PDAs is
described based on navigation actions locally done with
intermittently communication with the server. Phone SN Fd

The application described in [6] was thought to Anplcatibns Applications Apphications
provide mobile users with access to rich multimedia
information and services and for that approaches were

User

investigated for overcoming the display limitations of a l l l

PDA. The CMCE (Composite Device Computing ‘ TAPT ‘ ‘ExTAPI‘ ‘ MAPT ‘ Iﬁ@
Environment) framework was developed situating the

PDA in the center of other surrounding computing Tsp

resources (PCs, telephones, TVs etc.). A unified
composite, virtual device is created from the PDA and ‘ .
the surrounding resources. ‘ Hardumee Davers ‘

Reference [7] presents an application in which PDAs Fig. 1
are used as electronic memory aids for disabled or
elderly users. The software interface from this paper unifies more

The application from [8] is addressed to computer mobile telephony services and facilities. Fig. 2 presents
network managers. Often they must solve urgent this approach.
network problems but have not access to a computer. A
tool is described for network management that uses a TTser
WAP interface.

In [9] mobile technologies are used in a pervasive
specific system. A solution for retail services based on v
wireless devices is described.

Reference {10] approaches an important disadvantage Phone,
of the PDAs: the display limitations. Web pages do not
display well on the small displays of the PDAs and the
user becomes disoriented. Overview and detail concerns Applications
of viewing must be treated.

A software interface for the mobile telephony
hardware module of the Pocket PC Phone Edition is

SMS and PIM

described in this paper. Facilities such as: navigation in L4 ¥
contacts data bases from the device and from the SIM TAPI ExTAFPI MAPT POOM
card, sending SMSs to contacts from the data bases, J' ¢

indication if SMSs are received, visualization of all the
calls received, missed or sent from the device, receiving
and sending phone calls are provided. A very simple and l
intuitive graphical user interface was developed.

TsP

h J h J

Hardware Drivers

3 The Software Interface Fig.2
Fig. 3 shows the structure of the application. The

application is structured on two levels, providing

3.1 The architecture flexibility, extension and reuse possibility of different
There are many applications for the mobile telephony components (modules, classes). The first level is made
capability of the Pocket PC but in most of the cases they by the graphical user interface module and the second

level consists in four libraries dynamically linked, each
one being responsible with different functionalities
implemented. There are also levels inside the mentioned
two levels. As part of the libraries the stratification is
accomplished by the use of the Bridge design pattern
which separates the abstractions from the abstractions
them selves. As part of the graphical user interface the
levels are done by class inheritance.

Graphical User

Interface

\
HPhene.dll ! ' JPhoneBool dil

POBox.dll

Fig. 3

The library XPhone.dll contains classes offering the
possibility to receive and send phone calls. Other
functions from the same library implements
functionalities such as: deblocking of SIM cards
protected by PIN codes, the name of the mobile
telephony operator at which the device is connected,
information about the level of the signal received by the
device etc.

The library XPhoneBook.dll ensures the visualization
and the use of the data base with the contacts, both
Outlook type and from the SIM card.

The library XCallLog.dll contains classes for
recording all the missed calls and the calls from the
mobile device. Methods are defined for navigating
between the recorded calls.

The library XPOBox.dll manages the SMSs. There
are classes for receiving new messages, for reading
already existing messages, for clearing messages and for
editing and sending messages.

3.2 The library XPhone.dll

It has the following tasks:

- generates phone calls to a specified number;
- receives new calls;

- reports the state of the virtual phone;

- provides the name of the GSM operator and
- reports the signal level.

Proceedings of the 4th WSEAS Int. Conference on Electromagnetics, Wireless and Optical Communications, Venice, ltaly, November 20-22, 2006

Figure 4 shows the class diagram of the library. As in
the following diagrams too, only the most relevant
classes for the respective module are presented and not
all the presented classes are completely presented, some
functions, private members or parameters being ignored.

The first two classes, CObservable and IObserver
were built with the Observer design pattern. The IPhone
class is derived both from the mentioned classes.

The second design pattern used was Bridge. The four
classes based on this deign pattern are /Phonelmpl and
IPhone (with interface role) and CXdaPhonelmpl and
CbmwPhone. Examples of functions are: AcceptCal for
received calls, DialNumber for calls to be sent and
GetNumber for obtaining information about the other
person. In the CXdaPhonelmpl and CbmwPhone classes
there are two methods, called OnDialledID and
OnCallerID. They are callback type methods that is they
will be accessed when the modules TAPI and ExXTAPI
obtain the number called and the number of the caller.
An other function, lineCallBackFunc, receives and treats
messages arrived from the inferior levels, referring the
radio part of the device. The CXdaPhonelmpl and
CbmwPhone classes implement the Singleton design
pattern.

3.3 The library XCallLog.dll
The role of this dynamically linked library is to create an
appropriate interface for the data base of the mobile
device. The data base contains lists with different kinds
of calls: lost, done, receipted. Its client is the graphical
user interface module. The methods which can be used
for navigating are: First, which sets the cursor on the
first position from the calls list, Next, which decrements
the cursor position on the selected list, Previous, which
increments the cursor position on the selected list and
isDone which returns a binary value indicating if the
cursor is on the last position of the list.

The data of a real person are encapsulated in the class
CPerson. The structure and its implementation are given
below:

class CPerson
{
protected:
CString m_strName ;
CString m_ strMobileNumber ;
CString m_ strHomeNumber ;
CString m_ strOfficeNumber ;
public:
CPerson(CString strName
CString strMobileNumber = “”
CString strHomeNumber = “”
CString strOfficeNumber = “”
m_strName (strName) ,
m_strMobileNumber (strMobileNumber),
m_strHomeNumber (strHomeNumber),

165

m_strOfficeNumber (strOfficeNumber{}
CString GetName () {return m strName;}

CString GetMobileNumber () {return
m_strMobileNumber; }

CString GetHomeNumber () {return
m_strHomeNumber; }

CString GetOfficeNumber () {return

m_strOfficeNumber; }
b

As it can be observed, this class encapsulates four
information about a person: name and three phone
numbers. This class does not offers direct access to its
members but only public methods through which the
internal values can be obtained. It is a protection against
the accidental modification of the contained values.

There are also three functions, ADDFilter,
RemoveFilter and SetFilter, which offer the possibility
to set, add or eliminate filters for the access to the data
base. They receive an integer type parameter which can
take one of three values defined in the program. The
values are defined as it follows:

#indef FMISSED

#define FMISSED 0x000F
#endif

#indef FDIALED

#define FDIALED 0x00F0

#endif

#indef FRECEIVED

#define FRECEIVED 0x0F0O0
#endif

Combinations between the three constants, using the
OR operation, are also possible. In order to effectively
action on the data base the Refresh function was created.
It can be used even if there are not modifications of the
filter and then the effect will be the cursor positioning on
the first position. Fig. 5 presents the class diagram of the
XCallLog.dll library.

3.4 The library XPhonebook.dll
The role of this library is to offer to the client the
possibility to access the two data bases with contacts.
There are two formats for the contacts: POOM (Pocket
Outlook Object Model) and SIM card format.

There is one class, CBmwPhoneBook, for accessing
the two data bases. Its implementation is:

class XDAPHONEBK API CBmwPhoneBook

{

private:
CPersonList *m pList;
CPersonListElement *m pElement;
int m_iSource;
CString m_strFilter;
IPhoneBookImpl *m pPhoneBookImpl;

Proceedings of the 4th WSEAS Int. Conference on Electromagnetics, Wireless and Optical Communications, Venice, ltaly, November 20-22, 2006

Bool GetNewPerson ();
public:
void First()
void Next () ;
void Previous();
bool isFirst();
bool isLast();
CPerson GetPerson();
void SetFilter (CString Filter);
void SetSource (int Source);
CBmwPhoneBook (int
Filter);
-CBmwPhoneBook () ;

Source, CString

I

A header file will be necessary, containing two
constants, for setting the source of contacts: Outlook or
SIM card. The file is presented below:

#ifndef F XDZ PHONEBOOK
#define I XDA PHONEBOOK 0x0F
#endif

#ifndef F_POOM_PHONEBOOK
#define F POOM_ PHONEBOOK 0xFO0
#endif

Other values or combinations between the mentioned
values are not allowed. A filter can be applied on the
names of the selected contacts, using the function
SetFilter(CString Filter). This function receives a
CString type parameter (a MFC class which abstracts a
string of characters) which will be memorized as a
private member and applied to the calls list of the
method GetPerson.

There are two classes which implement the data bases
with contacts: CXdaPhoneBooklmpl for Outlook type
contacts and CPoomPhoneBookIimpl for contacts from
the SIM card.

3.5 The library XPOBox.dll
It is responsible with the management of the SMSs,
including the receipt and transmitting of messages, the
visualization and the clearing of the existing messages.

This library uses VOMAPI modules for message
services. These modules are situated above the MAPI
level. MAPI (Messaging Application Programming
Interface) are operating system’s modules used by
applications for creating, processing, transferring and
recording e-mail and SMS messages. These functions
provide the necessary tools for defining the scope and
the content of the messages offering, at the same time,
flexibility in managing the existent messages in internal
data bases.

The VOMAPI classes were represented and the
connections to the implemented classes were also

166

distinguished. The CVOMAPIMessage class
encapsulates the data of a message and the operators
applied to the data. The CVOMAPI class is the general
class offering notifications when messages arrive and
functions for managing the existent classes.

A new abstraction appears that of a message
represented by the CSms class. It contains a CPerson
type object in which the data about the sender and the
content of the message, the arrival date and the number
of the call center through which the message was
received is memorized.

3.6 The graphical user interface module

It is responsible with the creation and the management of
the graphical user interface. It calls all the facilities
provided by the libraries created at user’s request. All the
four dynamically linked libraries were used for creating
this module. The module was statically linked with the
four .LIB type files generated at the libraries creation.

4 Conclusions

The created software has advantages from the user’s and

from the developer’s points of view. The user’s

advantages are:

- the possibility to use all the mobile telephony
capabilities of the Pocket PC Phone Edition and

- he has an integrated system which includes services
usually offered as separate software packets.

The developer’s advantages are: modularity and
flexibility. The system has a decentralized architecture
thus reducing the complexity and helping to isolate
possible errors.

Further improvement directions are:

- the integration of a GPRS module for transferring
data;

- synchronization services for the contacts memorized
on the SIM card and in the Outlook memory of the
system or memorized on two devices running the
application or on two devices running two different
applications;

- the portability of the created software on other
Pocket PCs too, e.g. on a Pocket PC with an external
modem which can be a PCMCIA or Compact Flash
card.

Other improvements can be done at graphical
interface level: the possibility to modify with
configuration files the entire interface including the
positions of the buttons, the states of the buttons, the
colors, the fonts and the possibility to use graphical files
with different kind of compressions.

Proceedings of the 4th WSEAS Int. Conference on Electromagnetics, Wireless and Optical Communications, Venice, ltaly, November 20-22, 2006

References:

[1] Pocket PC Developer’s Network,
http://www.pocketpcdn.com

2] Pocket PC 2002 Emulator,

http://www.pocketpcdn.com

[3] Sharma, S.K., and Kitchens, F.L., Web Services
Architecture for M-Learning, FEJEL, Electronic
Journal of e-Learning, Vol. 2, Issue 2, December
2004

[4] Sanna, A., and Fornaro, C., IMoViS: A System for
Mobile Visualization of Intrusion Detection Data,
INFORMATION&SECURITY. An International
Journal, Vol. 12, No. 2, 2003, pp. 235 — 249

[5] Cohen, D., Herscovici, M., Petrushka, Y., Maarek,
Y.S., Soffer, A., and Newbold, D., Personalized
Pocket Directories for Mobile Devices, Proceedings
of the Eleventh International World Wide Web
Conference, WWW2002, Honolulu, Hawaii, USA,
May 7 - 11, 2002

[6] Pham, T.L., Schneider, G., Goose, S. and Pizano, A.,
Composite Device Computing Environment: A
Framework for Augmenting the PDA Using
Surrounding Resources, Proceedings of the ACM
CHI2000 Workshop on Situated Interaction in
Ubiquitous Computing, The Hague, The Netherlands,
1-6 April 2000

[7] Inglis, E.A., Szymkowiak, A., Gregor, P., Newell,
A.F., Hine, N., Shah, P., Wilson, B.A., and Evans, J.,
Issues surrounding the user — centred development of
a new interactive memory aid, Universal Access in
the Information Society, Springer Berlin/ Heidelberg,
Vol. 2, No. 3, 2003, pp. 226 — 234

[8] Vieira Jr., A.C., and Anido, M.L., A Novel Tool for
Network Management Using WAP Interface,
Proceedings of the 18" International Conference on
Advanced Information Networking and Applications,
(AINA’04), Vol. 1, Fukuoka, Japan, March 2004

[9] Roussos, G., Kourouthanasis, P., Spinellis, D.,
Gryazin, E., Pryzbliski, M., Kalpogiannis, G., and
Giaglis, G., Systems architecture for pervasive retail,
Proceedings of the ACM Symposium on Applied
Computing, New York, 2003, pp. 631 — 636

[10] Rodden., K., Milic — Frayling, N, Sommerer, R.,
and Blackwell, A., Effective Web Searching on
Mobile Devices, Proceedings of HCI2003, the 17"
Annual Human — Computer Interaction Conference,
Bath, England, 8 — 12 September 2003

167

Proceedings of the 4th WSEAS Int. Conference on Electromagnetics, Wireless and Optical Communications, Venice, Italy, November 20-22, 2006

CObservable IObserver
i m_iObservers : int
L : voi
W AddObserver(pObs : IObserver*) : void ~<abstact>=UpdateQ:void
CObservable()
7 NotifyAll() : void
/ \ CXphonedllApp
TPhonelmpl T IPhone
D T — S —beimctGeemoladyl) Esiing
<<abstract=> AcceptCall() @ ——oboaS SLALAIS0. &
<=abstract==> UnlockSim() =cabstract=> Update() : void
& —Sabstrac nlockSi @ <<abstract=> UnlockSim(strPin : CString) : BOOL
<=abstract=> GetStatus() << 5 s
abstract==> TurnOn() : void
<=<abstract=> PowerOn() abstract TarnORD : void
<<=abstract>> PowerOff() 1 1 Coapsac urnOffY ; voi ;
: Cowe) @ <=abstract>> GetSignalStrength() : int
<==abstract>> GetSignalStrength() ‘ N ~ ~ :
<= . <<abstract=> GetOperator() : CString
abstract GetOperator() ‘ N
—~<abstract=> EndCall() —=sbstract>>HangUpQO::void.
@ <<abstract—— DialNumber() <<=abstract=> Call(strPhoneNo : CString) : void
G @ 1Phone(pPImpl : IPhonelmpl*)
GetImpl() : IPhonelmpl*
CXdaPhonelmpl
i ==static>> $ pSingleton : IPhonelmpl CBmwPhone
7% OnDialedID() i ==static>> $ pSingleton : IPhone
I nmCaller.
“@® OnCallerID()
GetNumber() W GetRemoteParty()
9 <<static>> Getlnstance() W GetStatus()
@ AcceptCall() 4@ <<=static>> Getlnstance()
: gnlgckSn(x;() € Update()
ctStatusi UnlockSim(Q)
@ PowerOffO) : TurnOn()
@ PowerOn() € TurnOffO)
@ GetSignalStrength() 4 GetSignalStrengthQ
4 GetOperator() 4 GetOperator()
4 EndCallQ < HangUpQO
4 DialNumber() < Call)
4 ~CXdaPhoneImpl() -4 CBmwPhone()
@ <=static>> lineCallbackFunc() ‘
u{;’ CXdaPhoneImpl()
Fig. 4. The class diagram of the XPhone.dll library
ICallLog

® <<abstract>> Refresh()
<<abstract>> RemoveFilter()
CXcalllogdllApp ICallReadImpl © <<abstract>> AddFilter()
<<abstract>> SetFilter()
| <<abstract>> GetCall()
1 1 <<abstract>> isDone()
<<abstract>> Previous()

g ¥ ICallReadImpl()
<<abstract>> Update() : void

<<abstract>> Next()
CPerson @ <<abstract=> First()
J(m_strOfficeNumber : CString /\
g m_strHomeNumber : CString
." m_strMobileNumber : CString
'« m_strName : CString CXdacCallReadlmpl ‘
W GetOfficeNumber() f m_hCallLog : HANDLE CBmwCallLog
‘ GetHomeNumber() o _— .
® GetMobileNumber() ® <<virtual>> ~CXdaCallReadImpl() “%{ m_iFilter : int
‘ GetName() ‘ CXdacCallReadImpl() /ﬁ(m_blsDone : bool)
‘ CPerson() <<virtual>> GetMissedCall() %{ m_pElement : CCallListElement
@ m_pList : CCallList
© <<virtual>> ~CBmwCallLog()
< CBmwcCallLog()
L ® Refresh()
1 @ RemoveFilter()
P _— : AddFilter()
allListElement T SetFilter()
) g - ‘ isDone()
ié(m_iType : int o @ Previous()
<" m_pNext : CCallListElement P /417 @ Next()
@ m_pPrevious : CCallListElement ";I'/ ® GetCall()
CCallList 1 ® Eissi(
GetType()
© <<virtual>> ~CCallListElement()) N ‘
® CCallListElement() ¢ &0 m_pFirst : CCallListElement
© GetNext() “" m_pLast : CCallListElement
GetPrevious(Q 1| @ <<virtual>> ~CCallList()
CCallList()
AddElement()
GetFirst()
® GetLast()

Fig. 5. The class diagram of the XCallLog.dll library

168

