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Abstract: - There have been various representations used for encoding TSP tours in Genetic Algorithms. These 

representations, except binary representation, are forced to define their own crossover and mutation operators, 

and they cannot work with classical operators. In the other hand, in such cases, there is no guarantee that 

solutions, which obtained by crossover and mutation operators, are valid. So, we need some operation to repair 

chromosomes and transform invalid tours to valid tours. This operation is a time-consuming process. However 

binary representation is not recommended, in this paper we propose our binary representation based on 

mapping all possible solutions to a list of ordered binary representations which has some advantages. 
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1   Introduction 
     Traveling Salesman Problem (TSP) is defined as 

follows: given a collection of cities (nodes), in order 

to find the best (minimum cost) tour which visits 

each city exactly once and then return to starting 

city. This term, 'traveling salesman', was first used 

in 1932 [1]. 

     The Traveling Salesman Problem was proved to 

be NP-hard [2] and therefore any problem belonging 

to the NP-class can be formulated as a TSP problem. 

Researchers have suggested many heuristic 

algorithms, such as genetic algorithms (GAs) [3], for 

solving TSP [4]. Brady [5] was first researcher who 

tackled TSP with Genetic Algorithms and his works 

was followed by others [6] [7] [8]. 

     GAs was introduced by Holland [9]. In GAs the 

search space of one problem is defined as a 

collection of individuals (potential solutions). These 

individuals are encoded by strings (called 

chromosomes). The purpose of using GAs is to find 

best individual from the search space. The goodness 

of an individual is measured with an evaluation 

function (usually called fitness function). In 

selection phase, some individuals are selected. Then, 

in crossover phase, selected individuals are mating 

together pair by pair and create new individuals 

(usually called offspring). And finally, some of 

offspring is mutated in mutation phase. Each 

iteration, which consists of selection, crossover and 

mutation phases, called generation.  population is 

the set of individuals from the search space which is 

examined by GAs in each generation. 

     But before starting GAs for solving a TSP 

problem, there is one problem: how individuals are 

encoded and represented? We can divide TSP 

representation into three categories: Binary 

Representation, Vector Representation and Matrix 

Representation. We review these three groups in 

next sections respectively. In this paper, we 

introduce our proposed representation that has some 

advantages. We discuss about it later. 

     The structure of our paper is as follows: In the 

following sections (sections 2, 3 and 4), we review 

exist recommended representations. Then, Section 5 

contains our proposed binary representation and its 

algorithms which are used in GAs. In Section 6 we 

show comparisons between our representation and 

others. Last, in Section 7 we provide our 

conclusions. 

 

 

2   Binary representation 
     Common problems, which use GAs, are encoded 

as sequences of bits. However this approach is not 

recommended for solving TSP, Lidd [10] describes 

a GA approach for the TSP with a binary 

representation and classical operators (crossover and 

mutation). The illegal tours are evaluated on the 

basis of complete (not necessarily legal) tours 

created by a greedy algorithm. The reported results 
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are of surprisingly high quality; however, the largest 

considered test case consisted of 100 cities only 

[11]. 

     For example, a tour 1-2-4-3-8-5-0-6-7 is 

represented: 

(0001 0010 0100 0011 1000 0101 0000 0110 0111) 

(Memorize mentioned tour, because we represent it 

in other representations when they are studied)  

     Michalewicz [11] believes that: There is an 

agreement in the GA community that the binary 

representation of tours is not well suited for the TSP, 

"It is not hard to see why". We discuss about it later 

that it can be right or not! 

 

 

3   Vector representation 
     During the last few years there have been three 

vector representations considered in connection with 

the TSP [11]: adjacency, ordinal, and path 

representations. Each of these representations has its 

own genetic operators.  

     The adjacency representation represents a tour as 

a list of c cities. The city j is listed in the position i if 

and only if the tour leads from city i to city j. In this 

case, aforesaid tour is represented as follows:  

(6 2 4 8 3 0 7 1 5) 

 

     The ordinal representation represents a tour as a 

list of c cities; the i-th element of the list is a number 

in the range from 1 to n–i+1. The idea behind the 

ordinal representation is as follows: There is some 

ordered list of cities C, which serves as a reference 

point for lists in ordinal representations. Assume, for 

example, that such an ordered list (reference point) 

is simply C = (0 1 2 3 4 5 6 7 8). Here, our example 

is represented as a list l of references, l = (2 2 3 2 5 2 

1 1 1). 

     The path representation is perhaps the most 

natural representation of a tour. Our example is 

represented simply as: 

(1 2 4 3 8 5 0 6 7) 

 

 

4   Matrix representation 
     There are at least two different representations to 

construct an evolution program using matrix 

representation for chromosomes. They are discussed 

briefly, in this section. 

     Fox and McMahon [12] represented a tour as a 

precedence binary matrix M. Matrix element mij in 

row i and column j contains a 1 if and only if the 

city i occurs before city j in the tour. 

     In this representation, the n.n matrix M 

representing a tour (total order of cities) has the 

following properties: 

1. The number of 1s is exactly 
2

)1( −nn
. 

2. mii = 0 for all ni ≤≤0 , and  

3. if mij = 1 and mjk = 1 then mik = 1. 

     Our example is represented as: 

      The second approach in using matrix 

representation was described by Seniw [13] and 

Homaifar and Guan [14] separately. Matrix element 

mij in the row i and column j contains a 1 if and only 

if the tour goes from city i directly to city j. This 

means that there is only one nonzero entry for each 

row and each column in the matrix (for each city i 

there is exactly one city visited prior to i, and 

exactly one city visited next to i). 

     See our example in this case: 

However, they used different crossover operators 

and heuristic inversion. 

 

 

5   Proposed binary representation 
     "Unfortunately, there is no practical way to 

encode a TSP as a binary string that does not have 

ordering dependencies or to which operators can be 

applied in a meaningful fashion. Simply crossing 

strings of cities produces duplicates and omissions. 

Thus, to solve this problem some variation on 

standard genetic crossover must be used. The ideal 

recombination operator should recombine critical 

 0 1 2 3 4 5 6 7 8 

0 0 0 0 0 0 0 1 0 0 

1 0 0 1 0 0 0 0 0 0 

2 0 0 0 0 1 0 0 0 0 

3 0 0 0 0 0 0 0 0 1 

4 0 0 0 1 0 0 0 0 0 

5 1 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 1 0 

7 0 1 0 0 0 0 0 0 0 

8 0 0 0 0 0 1 0 0 0 
 

 0 1 2 3 4 5 6 7 8 

0 0 0 0 0 0 0 1 1 0 

1 1 0 1 1 1 1 1 1 1 

2 1 0 0 1 1 1 1 1 1 

3 1 0 0 0 0 1 1 1 1 

4 1 0 0 1 0 1 1 1 1 

5 1 0 0 0 0 0 1 1 0 

6 0 0 0 0 0 0 0 1 0 

7 0 0 0 0 0 0 0 0 0 

8 1 0 0 0 0 1 1 1 0 
 

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006  364



information from the parent structures in a non-

destructive, meaningful manner."[15], nevertheless 

we claim here that it can be wrong! 

     In proposed method, the some ordered numbers 

are assigned to all possible solutions. Classical 

crossover and mutation operators are applied on 

binary format of these numbers and new calculated 

binary numbers represents new tours. 

     Let start with six major questions which is raised 

when the proposed method is studied: 

1- How we assign a number to a tour? 

2- How can we find assigned number of 

a specific tour? 

3- How can we find the tour, which a 

specific number is assigned to? 

4- Is it necessary to introduce new 

crossover or mutation operators? 

5- How can we find whether a tour is 

legal or not? 

6- How can we repair an illegal tour? 

     Each answer is divided into 2 sections: first 

section is an example (a three-city problem); next 

section is in general (a c-city problem). 

     Answer of question 1: suppose that we have a 

three-city TSP problem with cities, which are 

labelled 0, 1, and 2. The number of all possible 

solutions are !3 (In other hand, the search space has 

6 members). We can assign the number 0 to 5 to 

these 6 tours as follows: 

     Just like alphabetic ordering that a word starting 

with 'a' is before a word starting with 'b' and so on, 

we suppose that a tour starting with city 0 is before a 

tour starting with city 1 and so on.  And, if two tours 

start with same city, for example (1 0 2) and (1 2 0), 

then we must compare next cities of them (So, 1-0-2 

is prior to 1-2-0). Table 1 shows all 6 tours and their 

assigned number (in decimal and binary formats). 

     We know that for representing these 6 tour, we 

need � �)6lg( or 3 bits. Note that there are no tours 

which the numbers 6 and 7 are assigned to them. 

These numbers are illegal and if they are created as 

new individuals (by crossover and mutation), they 

must be repaired (see answer of questions 4 and 5 

for more explanations). 

     In general, for a c-city TSP problem (cities are 

labelled from 0 to c-1), the number of all potential 

solutions (all permutations) is equal to !c . For 

sorting these permutations, we assume that: 

city  i < city i+1 ; for each 0 < i < c 

     Hence, the tours starting with i are before tours 

starting with i+1 and if j-th (0 < j < c) city of two 

tours are same, we compare j+1-th city of them and 

so on.  

     For representing these !c  tours in binary 

representation, we can assign numbers 0 to 1!−c to 

them. So, we need b= � �)!lg(c  bits. Note that the 

numbers !c  to 12 −
b

are illegal, and they must be 

transformed to legal tours. 

     Answer of question 2: Suppose we want to find 

the number assigned to tour (1 0 2). Firstly, like 

ordinal representation, we create an ordered list l, 

which consists of labels of all cities (note that 

indices of cities in l start from 0). Hence, 

l = {0, 1, 2} 

 

     First city in supposed tour is 1. This city is 

second city in l (its index is 1). The assigned number 

to this tour is greater than or equal to )!13(*1 − . 

Now we remove 1 from l. Thus: 

l = {0, 2} 

 

     Next number in supposed tour is 0. It is 0-th 

number in new l. In this step, the assigned number to 

this tour is greater than or equal 

to )!23(*0)!13(*1 −+− . If we remove 0 from l, the 

number of its members becomes 1 and calculation is 

stopped. Desired number is equal to last obtained 

number (i.e. )!23(*0)!13(*1 −+−  or 2 ). 

     In general, the assigned number n of a tour t in a 

c-city (labelled by numbers 0 to c-1) TSP problem is 

obtained as follows: 

      

     After finishing above pseudo-code n is assigned 

number of t. 

Table 1- ordered tours and their assigned number in decimal and 

binary formats 

Numbers Binary representation Tour 

0 000 (0 1 2) 

1 001 (0 2 1) 

2 010 (1 0 2) 

3 011 (1 2 0) 

4 100 (2 0 1) 

5 101 (2 1 0) 

6 110 N/A 

7 111 N/A 

 

n = 0 

l = {0, 1, 2…, c-1} 

for (i=1; i<c; i++){ 

 x=t[i-1] 

ind= l.indexof(x) 

n+= ind* )!( ic −  

l.remove(x);  

} 
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l = {0, 1, 2…, c-1} 

t=() 

for (i=1; i<=c; i++){ 

 q= n / )!( ic −  

 r= n % )!( ic −  

 x=l.elementAt(q) 

 l.remove(x) 

 t.add(x) 

 n=r 

} 

 

     Table 2 shows all steps for obtaining number for 

our aforesaid example: 1-2-4-3-8-5-0-6-7. As 

shown, n is 47022 and it means that in proposed 

ordered list of all permutations, the rank of this tour 

is 47022. The number of bits we need is � �)!9lg(  

(i.e. 19) and this tour is represented as: 

 

0001011011110101110 

 

     Compare this length (19 bits) with length of 

representing with binary or vector representations 

(36 bits) and matrix representations (81 bits). We 

discuss about it in section 6 in detail. 

     Answer of question 3: Suppose we want to find 

a tour which number 4 is assigned to it. Like 

previous answer, let l = {0, 1, 2}. 4 module (3-1)! = 

2, so first city is 2-nd city in l (i.e. city 2). We 

remove it from l and repeat algorithms by remainder 

of 4/(3-1)! (i.e. 0). 0 module (3-2)! = 0, so next city 

is 0-th city in l (i.e. city 0). The algorithm ends 

because l has one member and it is last city in tour. 

     In general, in a c-city (labelled by numbers 0 to 

c-1) TSP problem the tour t, which a number n is 

assigned to it, is obtained as follows: 

     After finishing above pseudo-code, desired tour t 

is constructed.  

     Table 3 shows all steps for obtaining the tour in a 

9-city TSP problem when its assigned number n is 

47022. As shown, the tour is our example tour 

which its number was calculated in previous answer. 

     Answer of question 4: Absolutely not! Classical 

operators (crossover and mutation), which can 

manipulate any bit strings, are enough. They are 

proposed by Holland [9]. 

     Answer of question 5: Just by using an if 

statement: 

if !(n<c!) then 

 tour is illegal  

     Answer of question 6: There are some ways to 

repair illegal tours: 

1- Set last bit (MSB) to 0: Most Significant Bit 

of an illegal tour is 1 certainly. So, if we set 

MSB to 0, an illegal tour becomes legal. 

2- Complement all of bits: like above, MSB is 

1 and by complementing, it becomes 0. 

3- Subtract population size from it: new tour is 

in legal range. 

     By applying these three ways exactly once, we 

can obtain legal tours.  

 

 

6   Comparison 
     The first comparison case is memory comparison 

between four approaches (See table 4). As we know: 

)2()()!(
2nn

nn θθθ <<  

Thus, 

� � � �
2)lg(.)!lg( nnnn <<  

Table 2- all steps for calculating n which is assigned to tour 1-2-4-3-8-5-0-6-7 according to proposed algorithm shown in answer of 

question 2. Before starting these steps, l = {0, 1, 2, 3, 4, 5, 6, 7, 8} and n=0 (in this case, c =9) 

i l (before removing x) x ind ind* )!( ic −  n l (after removing x) 

1 {0,1,2,3,4,5,6,7,8} 1 1 1 * (9-1)! = 40320 40320 {0,2,3,4,5,6,7,8} 

2 {0,2,3,4,5,6,7,8} 2 1 1 * (9-2)! = 5040 45360 {0,3,4,5,6,7,8} 

3 {0,3,4,5,6,7,8} 4 2 2 * (9-3)! = 1440 46800 {0,3,5,6,7,8} 

4 {0,3,5,6,7,8} 3 1 1 * (9-4)! = 120 46920 {0,5,6,7,8} 

5 {0,5,6,7,8} 8 4 4 * (9-5)! = 96 47016 {0,5,6,7} 

6 {0,5,6,7} 5 1 1 * (9-6)! = 6 47022 {0,6,7} 

7 {0,6,7} 0 0 0 * (9-7)! = 0 47022 {6,7} 

8 {6,7} 6 0 0 * (9-8)! = 0 47022 {7} 

 

Table 3- all steps for creating t when n is 47022 (in this case, c =9) 

i l (before removing x) n )!( ic −  q r x l (after removing x) t 

1 {0,1,2,3,4,5,6,7,8} 47022 8! = 40320 1 6702 1 {0,2,3,4,5,6,7,8} 1 

2 {0,2,3,4,5,6,7,8} 6702 7! = 5040 1 1662 2 {0,3,4,5,6,7,8} 1-2 

3 {0,3,4,5,6,7,8} 1662 6! = 720 2 222 4 {0,3,5,6,7,8} 1-2-4 

4 {0,3,5,6,7,8} 222 5! = 120 1 102 3 {0,5,6,7,8} 1-2-4-3 

5 {0,5,6,7,8} 102 4! = 24 4 6 8 {0,5,6,7} 1-2-4-3-8 

6 {0,5,6,7} 6 3! = 6 1 0 5 {0,6,7} 1-2-4-3-8-5 

7 {0,6,7} 0 2! = 2 0 0 0 {6,7} 1-2-4-3-8-5-0 

8 {6,7} 0 1! = 1 0 0 6 {7} 1-2-4-3-8-5-0-6 

9 �{7} 0 0! = 1 0 0 7 {} 1-2-4-3-8-5-0-6-7 

 

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006  366



 

     In addition, for proposed binary representation, 

time complexity of creating new individuals, finding 

illegal offspring and repairing illegal tours are )1(θ . 

Unfortunately, no results about time complexity are 

found for others representations, but it is obvious 

their time complexity is worse than )1(θ (except for 

ordinal representation that no illegal tours are 

created and it does not need any extra operation). 

 

 

7   Conclusion 
     Needless to say, that proposed method for TSP 

tour representation are much better than others in 

time and space. However, in this paper statistical 

topics are avoided, it seems that reasons are 

reasonable.  

     For future works, two major topics are focused: 

1. Comparison of time complexity of creating 

new individuals, finding illegal offspring 

and repairing illegal tours by using statistics. 

2. Testing some benchmarks to find out 

whether we can obtain better solutions or 

not (because we use classical operators, we 

can guess GAs can explore more room of 

search space and better solutions are 

obtained). 
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Table 4- comparison between four representation approaches 

Approach Memory (bits) 

Binary (Lidd) � �)lg(. nn  

Vector � �)lg(. nn  

Matrix 2
n  

Proposed binary � �)!lg(n  
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