
New binary representation in Genetic Algorithms for solving TSP by

mapping permutations to a list of ordered numbers

AMIN MOHEBIFAR

Computer department of faculty of engineering

University of Isfahan

81746-73441 Hezar Jerib st., Isfahan

IRAN

mohebi_far@eng.ui.ac.ir

Abstract: - There have been various representations used for encoding TSP tours in Genetic Algorithms. These

representations, except binary representation, are forced to define their own crossover and mutation operators,

and they cannot work with classical operators. In the other hand, in such cases, there is no guarantee that

solutions, which obtained by crossover and mutation operators, are valid. So, we need some operation to repair

chromosomes and transform invalid tours to valid tours. This operation is a time-consuming process. However

binary representation is not recommended, in this paper we propose our binary representation based on

mapping all possible solutions to a list of ordered binary representations which has some advantages.

Key-Words: - Traveling Salesman Problem, Genetic Algorithms, binary representation, vector representation,

matrix representation

1 Introduction
 Traveling Salesman Problem (TSP) is defined as

follows: given a collection of cities (nodes), in order

to find the best (minimum cost) tour which visits

each city exactly once and then return to starting

city. This term, 'traveling salesman', was first used

in 1932 [1].

 The Traveling Salesman Problem was proved to

be NP-hard [2] and therefore any problem belonging

to the NP-class can be formulated as a TSP problem.

Researchers have suggested many heuristic

algorithms, such as genetic algorithms (GAs) [3], for

solving TSP [4]. Brady [5] was first researcher who

tackled TSP with Genetic Algorithms and his works

was followed by others [6] [7] [8].

 GAs was introduced by Holland [9]. In GAs the

search space of one problem is defined as a

collection of individuals (potential solutions). These

individuals are encoded by strings (called

chromosomes). The purpose of using GAs is to find

best individual from the search space. The goodness

of an individual is measured with an evaluation

function (usually called fitness function). In

selection phase, some individuals are selected. Then,

in crossover phase, selected individuals are mating

together pair by pair and create new individuals

(usually called offspring). And finally, some of

offspring is mutated in mutation phase. Each

iteration, which consists of selection, crossover and

mutation phases, called generation. population is

the set of individuals from the search space which is

examined by GAs in each generation.

 But before starting GAs for solving a TSP

problem, there is one problem: how individuals are

encoded and represented? We can divide TSP

representation into three categories: Binary

Representation, Vector Representation and Matrix

Representation. We review these three groups in

next sections respectively. In this paper, we

introduce our proposed representation that has some

advantages. We discuss about it later.

 The structure of our paper is as follows: In the

following sections (sections 2, 3 and 4), we review

exist recommended representations. Then, Section 5

contains our proposed binary representation and its

algorithms which are used in GAs. In Section 6 we

show comparisons between our representation and

others. Last, in Section 7 we provide our

conclusions.

2 Binary representation
 Common problems, which use GAs, are encoded

as sequences of bits. However this approach is not

recommended for solving TSP, Lidd [10] describes

a GA approach for the TSP with a binary

representation and classical operators (crossover and

mutation). The illegal tours are evaluated on the

basis of complete (not necessarily legal) tours

created by a greedy algorithm. The reported results

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 363

are of surprisingly high quality; however, the largest

considered test case consisted of 100 cities only

[11].

 For example, a tour 1-2-4-3-8-5-0-6-7 is

represented:

(0001 0010 0100 0011 1000 0101 0000 0110 0111)

(Memorize mentioned tour, because we represent it

in other representations when they are studied)

 Michalewicz [11] believes that: There is an

agreement in the GA community that the binary

representation of tours is not well suited for the TSP,

"It is not hard to see why". We discuss about it later

that it can be right or not!

3 Vector representation
 During the last few years there have been three

vector representations considered in connection with

the TSP [11]: adjacency, ordinal, and path

representations. Each of these representations has its

own genetic operators.

 The adjacency representation represents a tour as

a list of c cities. The city j is listed in the position i if

and only if the tour leads from city i to city j. In this

case, aforesaid tour is represented as follows:

(6 2 4 8 3 0 7 1 5)

 The ordinal representation represents a tour as a

list of c cities; the i-th element of the list is a number

in the range from 1 to n–i+1. The idea behind the

ordinal representation is as follows: There is some

ordered list of cities C, which serves as a reference

point for lists in ordinal representations. Assume, for

example, that such an ordered list (reference point)

is simply C = (0 1 2 3 4 5 6 7 8). Here, our example

is represented as a list l of references, l = (2 2 3 2 5 2

1 1 1).

 The path representation is perhaps the most

natural representation of a tour. Our example is

represented simply as:

(1 2 4 3 8 5 0 6 7)

4 Matrix representation
 There are at least two different representations to

construct an evolution program using matrix

representation for chromosomes. They are discussed

briefly, in this section.

 Fox and McMahon [12] represented a tour as a

precedence binary matrix M. Matrix element mij in

row i and column j contains a 1 if and only if the

city i occurs before city j in the tour.

 In this representation, the n.n matrix M

representing a tour (total order of cities) has the

following properties:

1. The number of 1s is exactly
2

)1(−nn
.

2. mii = 0 for all ni ≤≤0 , and

3. if mij = 1 and mjk = 1 then mik = 1.

 Our example is represented as:

 The second approach in using matrix

representation was described by Seniw [13] and

Homaifar and Guan [14] separately. Matrix element

mij in the row i and column j contains a 1 if and only

if the tour goes from city i directly to city j. This

means that there is only one nonzero entry for each

row and each column in the matrix (for each city i

there is exactly one city visited prior to i, and

exactly one city visited next to i).

 See our example in this case:

However, they used different crossover operators

and heuristic inversion.

5 Proposed binary representation
 "Unfortunately, there is no practical way to

encode a TSP as a binary string that does not have

ordering dependencies or to which operators can be

applied in a meaningful fashion. Simply crossing

strings of cities produces duplicates and omissions.

Thus, to solve this problem some variation on

standard genetic crossover must be used. The ideal

recombination operator should recombine critical

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 0 0

2 0 0 0 0 1 0 0 0 0

3 0 0 0 0 0 0 0 0 1

4 0 0 0 1 0 0 0 0 0

5 1 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 1 0

7 0 1 0 0 0 0 0 0 0

8 0 0 0 0 0 1 0 0 0

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 1 1 0

1 1 0 1 1 1 1 1 1 1

2 1 0 0 1 1 1 1 1 1

3 1 0 0 0 0 1 1 1 1

4 1 0 0 1 0 1 1 1 1

5 1 0 0 0 0 0 1 1 0

6 0 0 0 0 0 0 0 1 0

7 0 0 0 0 0 0 0 0 0

8 1 0 0 0 0 1 1 1 0

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 364

information from the parent structures in a non-

destructive, meaningful manner."[15], nevertheless

we claim here that it can be wrong!

 In proposed method, the some ordered numbers

are assigned to all possible solutions. Classical

crossover and mutation operators are applied on

binary format of these numbers and new calculated

binary numbers represents new tours.

 Let start with six major questions which is raised

when the proposed method is studied:

1- How we assign a number to a tour?

2- How can we find assigned number of

a specific tour?

3- How can we find the tour, which a

specific number is assigned to?

4- Is it necessary to introduce new

crossover or mutation operators?

5- How can we find whether a tour is

legal or not?

6- How can we repair an illegal tour?

 Each answer is divided into 2 sections: first

section is an example (a three-city problem); next

section is in general (a c-city problem).

 Answer of question 1: suppose that we have a

three-city TSP problem with cities, which are

labelled 0, 1, and 2. The number of all possible

solutions are !3 (In other hand, the search space has

6 members). We can assign the number 0 to 5 to

these 6 tours as follows:

 Just like alphabetic ordering that a word starting

with 'a' is before a word starting with 'b' and so on,

we suppose that a tour starting with city 0 is before a

tour starting with city 1 and so on. And, if two tours

start with same city, for example (1 0 2) and (1 2 0),

then we must compare next cities of them (So, 1-0-2

is prior to 1-2-0). Table 1 shows all 6 tours and their

assigned number (in decimal and binary formats).

 We know that for representing these 6 tour, we

need � �)6lg(or 3 bits. Note that there are no tours

which the numbers 6 and 7 are assigned to them.

These numbers are illegal and if they are created as

new individuals (by crossover and mutation), they

must be repaired (see answer of questions 4 and 5

for more explanations).

 In general, for a c-city TSP problem (cities are

labelled from 0 to c-1), the number of all potential

solutions (all permutations) is equal to !c . For

sorting these permutations, we assume that:

city i < city i+1 ; for each 0 < i < c

 Hence, the tours starting with i are before tours

starting with i+1 and if j-th (0 < j < c) city of two

tours are same, we compare j+1-th city of them and

so on.

 For representing these !c tours in binary

representation, we can assign numbers 0 to 1!−c to

them. So, we need b= � �)!lg(c bits. Note that the

numbers !c to 12 −
b

are illegal, and they must be

transformed to legal tours.

 Answer of question 2: Suppose we want to find

the number assigned to tour (1 0 2). Firstly, like

ordinal representation, we create an ordered list l,

which consists of labels of all cities (note that

indices of cities in l start from 0). Hence,

l = {0, 1, 2}

 First city in supposed tour is 1. This city is

second city in l (its index is 1). The assigned number

to this tour is greater than or equal to)!13(*1 − .

Now we remove 1 from l. Thus:

l = {0, 2}

 Next number in supposed tour is 0. It is 0-th

number in new l. In this step, the assigned number to

this tour is greater than or equal

to)!23(*0)!13(*1 −+− . If we remove 0 from l, the

number of its members becomes 1 and calculation is

stopped. Desired number is equal to last obtained

number (i.e.)!23(*0)!13(*1 −+− or 2).

 In general, the assigned number n of a tour t in a

c-city (labelled by numbers 0 to c-1) TSP problem is

obtained as follows:

 After finishing above pseudo-code n is assigned

number of t.

Table 1- ordered tours and their assigned number in decimal and

binary formats

Numbers Binary representation Tour

0 000 (0 1 2)

1 001 (0 2 1)

2 010 (1 0 2)

3 011 (1 2 0)

4 100 (2 0 1)

5 101 (2 1 0)

6 110 N/A

7 111 N/A

n = 0

l = {0, 1, 2…, c-1}

for (i=1; i<c; i++){

 x=t[i-1]

ind= l.indexof(x)

n+= ind*)!(ic −

l.remove(x);

}

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 365

l = {0, 1, 2…, c-1}

t=()

for (i=1; i<=c; i++){

 q= n /)!(ic −

 r= n %)!(ic −

 x=l.elementAt(q)

 l.remove(x)

 t.add(x)

 n=r

}

 Table 2 shows all steps for obtaining number for

our aforesaid example: 1-2-4-3-8-5-0-6-7. As

shown, n is 47022 and it means that in proposed

ordered list of all permutations, the rank of this tour

is 47022. The number of bits we need is � �)!9lg(

(i.e. 19) and this tour is represented as:

0001011011110101110

 Compare this length (19 bits) with length of

representing with binary or vector representations

(36 bits) and matrix representations (81 bits). We

discuss about it in section 6 in detail.

 Answer of question 3: Suppose we want to find

a tour which number 4 is assigned to it. Like

previous answer, let l = {0, 1, 2}. 4 module (3-1)! =

2, so first city is 2-nd city in l (i.e. city 2). We

remove it from l and repeat algorithms by remainder

of 4/(3-1)! (i.e. 0). 0 module (3-2)! = 0, so next city

is 0-th city in l (i.e. city 0). The algorithm ends

because l has one member and it is last city in tour.

 In general, in a c-city (labelled by numbers 0 to

c-1) TSP problem the tour t, which a number n is

assigned to it, is obtained as follows:

 After finishing above pseudo-code, desired tour t

is constructed.

 Table 3 shows all steps for obtaining the tour in a

9-city TSP problem when its assigned number n is

47022. As shown, the tour is our example tour

which its number was calculated in previous answer.

 Answer of question 4: Absolutely not! Classical

operators (crossover and mutation), which can

manipulate any bit strings, are enough. They are

proposed by Holland [9].

 Answer of question 5: Just by using an if

statement:

if !(n<c!) then

 tour is illegal

 Answer of question 6: There are some ways to

repair illegal tours:

1- Set last bit (MSB) to 0: Most Significant Bit

of an illegal tour is 1 certainly. So, if we set

MSB to 0, an illegal tour becomes legal.

2- Complement all of bits: like above, MSB is

1 and by complementing, it becomes 0.

3- Subtract population size from it: new tour is

in legal range.

 By applying these three ways exactly once, we

can obtain legal tours.

6 Comparison
 The first comparison case is memory comparison

between four approaches (See table 4). As we know:

)2()()!(
2nn

nn θθθ <<

Thus,

� � � �
2)lg(.)!lg(nnnn <<

Table 2- all steps for calculating n which is assigned to tour 1-2-4-3-8-5-0-6-7 according to proposed algorithm shown in answer of

question 2. Before starting these steps, l = {0, 1, 2, 3, 4, 5, 6, 7, 8} and n=0 (in this case, c =9)

i l (before removing x) x ind ind*)!(ic − n l (after removing x)

1 {0,1,2,3,4,5,6,7,8} 1 1 1 * (9-1)! = 40320 40320 {0,2,3,4,5,6,7,8}

2 {0,2,3,4,5,6,7,8} 2 1 1 * (9-2)! = 5040 45360 {0,3,4,5,6,7,8}

3 {0,3,4,5,6,7,8} 4 2 2 * (9-3)! = 1440 46800 {0,3,5,6,7,8}

4 {0,3,5,6,7,8} 3 1 1 * (9-4)! = 120 46920 {0,5,6,7,8}

5 {0,5,6,7,8} 8 4 4 * (9-5)! = 96 47016 {0,5,6,7}

6 {0,5,6,7} 5 1 1 * (9-6)! = 6 47022 {0,6,7}

7 {0,6,7} 0 0 0 * (9-7)! = 0 47022 {6,7}

8 {6,7} 6 0 0 * (9-8)! = 0 47022 {7}

Table 3- all steps for creating t when n is 47022 (in this case, c =9)

i l (before removing x) n)!(ic − q r x l (after removing x) t

1 {0,1,2,3,4,5,6,7,8} 47022 8! = 40320 1 6702 1 {0,2,3,4,5,6,7,8} 1

2 {0,2,3,4,5,6,7,8} 6702 7! = 5040 1 1662 2 {0,3,4,5,6,7,8} 1-2

3 {0,3,4,5,6,7,8} 1662 6! = 720 2 222 4 {0,3,5,6,7,8} 1-2-4

4 {0,3,5,6,7,8} 222 5! = 120 1 102 3 {0,5,6,7,8} 1-2-4-3

5 {0,5,6,7,8} 102 4! = 24 4 6 8 {0,5,6,7} 1-2-4-3-8

6 {0,5,6,7} 6 3! = 6 1 0 5 {0,6,7} 1-2-4-3-8-5

7 {0,6,7} 0 2! = 2 0 0 0 {6,7} 1-2-4-3-8-5-0

8 {6,7} 0 1! = 1 0 0 6 {7} 1-2-4-3-8-5-0-6

9 �{7} 0 0! = 1 0 0 7 {} 1-2-4-3-8-5-0-6-7

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 366

 In addition, for proposed binary representation,

time complexity of creating new individuals, finding

illegal offspring and repairing illegal tours are)1(θ .

Unfortunately, no results about time complexity are

found for others representations, but it is obvious

their time complexity is worse than)1(θ (except for

ordinal representation that no illegal tours are

created and it does not need any extra operation).

7 Conclusion
 Needless to say, that proposed method for TSP

tour representation are much better than others in

time and space. However, in this paper statistical

topics are avoided, it seems that reasons are

reasonable.

 For future works, two major topics are focused:

1. Comparison of time complexity of creating

new individuals, finding illegal offspring

and repairing illegal tours by using statistics.

2. Testing some benchmarks to find out

whether we can obtain better solutions or

not (because we use classical operators, we

can guess GAs can explore more room of

search space and better solutions are

obtained).

References:

[1] E.L. Lawer, J.K. Lenstra, A.H.G. Rinnooy Kan,

and D.B. Shmoys, The Traveling Salesman

Problem, Chichester, UK : John Wiley, 1985

[2] M. Garey, and D. Johnson, Computers and

Intractability, San Francisco: W.H. Freeman,

1979

[3] D. E. Goldberg, Genetic Algorithm in Search,

Optimization and Machine Learning, New

York: Addison-Wesley, 1989

[4] P. Larranaga, C. M. H. Kuijpers, R. H. Murga,

I. Inza, and S. Dizdarevic, Genetic Algorithms

for the Travelling Salesman Problem: A Review

of Representations and Operators, Artificial

Intelligence Review, Vol. 13, 1999, pp. 129-

170.

[5] R.M. Brady, Optimization Strategies Gleaned

From Biological Evolution, Nature, Vol. 317,

1985, pp. 804 – 806.

[6] J. Grefenstette, R. Gopal, B. Rosmaita, and D.

Van Gucht, , Genetic Algorithms for the TSP.

Proc. 1
st
 International Conf. on Genetic

Algorithms and Their Applications, Hillsdale,

New Jersey, 1985, pp. 160-165.

[7] D.E. Goldberg, and Jr.R. Lingle, Alleles, Loci

and, the TSP, Proc. 1
st
 International Conf. on

Genetic Algorithms and Their Applications,

Hillsdale, New Jersey, 1985, pp. 154 – 159.

[8] I.M. Oliver, D.J. Smith and J.R.C. Holland, A

Study of Permutation Crossover Operators on

the TSP. Proc. 2
nd

 International Conf. on

Genetic Algorithms and Their Applications,

Hillsdale, New Jersey, 1987, pp. 224-230.

[9] J. Holland, Adaptation in Natural and Artificial

Systems, University of Michigan, 1975

[10] M.L. Lidd, Traveling Salesman Problem

Domain Application of a Fundamentally New

Approach to Utilizing Genetic Algorithms,

Technical Report, MITRE Corporation, 1991

[11] Z. Michalewicz, Genetic Algorithms + Data

Structures = Evolution Programs, Springer-

Verlag, 1996

[12] B.R. Fox, and M.B. McMahon, Genetic

Operators for Sequencing Problems. 1
st

Workshop on the Foundations of Genetic

Algorithms and Classifier Systems, San Mateo,

CA, 1991, pp. 284-300.

[13] D.A. Seniw, Genetic Algorithm for the

Traveling Salesman Problem, MSc Thesis,

University of North Carolina at Charlotte, 1991.

[14] A. Homaifar, & S. Guan, A New Approach on

the Traveling Salesman Problem by Genetic

Algorithm, Technical Report, North Carolina A

& T State University, 1991.

[15] D. Whitley, T. Starkweather, & D'A. Fuquay,

Scheduling Problems and Traveling Salesman:

The Genetic Edge Recombination Operator,

Proc. 3
rd

 International Conf. on Genetic

Algorithms, San Mateo, CA, 1989, pp. 133-140.

Table 4- comparison between four representation approaches

Approach Memory (bits)

Binary (Lidd) � �)lg(. nn

Vector � �)lg(. nn

Matrix 2
n

Proposed binary � �)!lg(n

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 367

