
Towards Policy-based System on Privacy

ASSADARAT KHURAT, JOERG ABENDROTH

Corporate Technology

Siemens AG

Otto-Hahn-Ring 6, 81739 Munich

GERMANY

Abstract: - Policies have been widely used to govern the action of a system. With the increasing availability of sensitive

data on-line, privacy becomes one of the most important aspects to be considered in e.g. health, financial and genetic

information areas. However, when deployed in real systems, many different types of system failures are likely to occur

due to software malfunction, human error, contradiction of internal policies with the legislation, etc. This can result in a

privacy breach. In this paper we introduce a Privacy Policy Fail-Safe device which is based on the Fail-Safe concept to

mitigate the effect of system failures to be in the safe state.

Key-Words: - Privacy Policy, Fail-safe, Policy-based System

1 Introduction
With the improvement of information and

communication systems technology, the availability of

on-line data has hugely increased. Not only can

everyone easily access available public information,

but also sensitive data that only authorized entities are

allowed to access.

In the security area, policies have been employed

to control the action of a system. With sensitive data,
privacy is one of the important aspects to be

considered in health, financial, and genetic

information area, etc. Both the European Union by the

European Union Parliament and the United States by

the Department of Human Services have encouraged

and specified privacy law in [1] and [2] respectively.

For a policy-based system in practice, there can be

many means causing privacy failures such as policy

contradiction, human error, software malfunction, etc.

It is common that the policies become quite numerous

and complicated. It is thus hard to manage such a huge

set of policies in a consistent way. This can easily

result in contradiction of policies [4] which wrong

decisions are more probable to occur such as the PDP

allowing an unauthorized client to obtain the requested

data. In addition, when there is human interaction

involved to accomplish the service, man-made error

[7] is highly probable to happen arising from such

things as misunderstanding, incaution and

unawareness. With software flaws, the potential for a

system malfunction is raised e.g. when the restricted

content of data is revealed or the response message is

sent to the wrong destination. Moreover, nowadays many

means of communication have emerged such as e-mail,

SMS, MMS, etc. The request and response messages can

be transmitted in the different channel types which

introduce in increased potential for system errors that the

message is sent in the wrong channel.

These problems may cause conflict against the privacy

law. Therefore, proper reaction of a system against failure

is also very important which the Fail-Safe concept seems

to be appropriate. The concept of Fail-Safe is not new. It

has been introduced in several applications such as

Integrated Circuits [3], railway applications [6], distributed

computing [5], airplane navigation systems, etc. Its general

idea is to limit the consequences of system or device

failures so that failures occur in a harmless or in the least

harmless way.

In this paper we are interested in the privacy issues of

outgoing data from a policy-based system. Our goal is to

improve the security of the existing policy-based systems

by introducing a device called Privacy Policy Fail-Safe

(PPFS). The purpose of this device is to be able to handle

the effect of system failures causing privacy breaches into

a safe state. This new device applies the Fail-Safe concept

to safeguard the outgoing sensitive data by using simple

prohibition policies. The PPFS performs a simple add-on

device to ensure the privacy policy in critical cases and

also enhances privacy by introducing a sticky policy

appended with the response message.

The remainder of this paper is organized as follows:

Section 2 discusses related work. In Section 3 we describe

existing policy-based system architectures and introduce a

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 177

novel concept of the PPFS device and how it is

integrated into the system. Section 4 shows an

example of an electronic health record service system

combined with our device. Some advantages of our

proposal in comparison to existing systems are

presented in Section 5. Finally, Section 6 gives a

summary and discusses further work.

2 Related Work
An Email Fail-Safe service [10] was proposed. It

employs Policy Enforcement to provide customizable

rules. Emails are filtered for detecting, managing and

enforcing according to the policies of the customers at

the system inbound and outbound. However, it does

not provide checking of content attributes of the data.

There is a proposal [9] that proposes an extended

access control model for XML to capture better the

user’s consent and need-to-know principles in medical

record due to the privacy law. However this work can

apply only with the content of the data.

3 Proposed Scheme
The architecture of a policy-based service system will

be explained in the first subsection. After that the

PPFS will be described.

3.1 Policy-based Service System Architecture
In a policy-based system, policy is used to designate

the procedure or process of an organization. An

important part of the system is called the policy

enforcing engine. Two main entities of the policy

enforcing engine are the Policy Enforcement Point

(PEP) [8] and the Policy Decision Point (PDP) [8].

The PEP provides all relevant attributes to the PDP in

order for the PDP to make a decision whether or not

the requested action is allowed. Fig. 1 shows the

architecture of a policy-based system. We assume that

the Encryption/Decryption layer and the

Authentication Authorization Support (AAS) are

highly trustable entities.

To establish secure communication, secure

channel techniques such as IPSec and TLS/SSL or

WS-Security may be deployed. The

Encryption/Decryption layer is an entity supporting

this secure communication.

The Authentication Authorization Support e.g.,

identity provider (IdP), is an entity which helps in

checking whether the client is the one who he claims to be.

Figure 1: Policy-based System Architecture

When a client wants to obtain some data in a service

system, it sends a request message to the service. The

following actions then take place.

1. The identity and privilege of the requester are verified

at the policy enforcing engine.

2. The PEP checks the client’s identity by querying the

Authentication Authorization Support (AAS).

3. Once the request is authenticated, the PEP asks the

PDP to determine the client’s permission. This can be

done by extracting necessary attributes from the

request and sending them to the PDP.

4. The PDP makes a decision by matching the obtained

attributes with the appropriate policies. The PDP’s

decision is sent back to the PEP.

5. The PEP enforces the policy by sending the message

to the Application Service.

6. If the PDP’s decision is “permit”, the Application

Service retrieves the requested data from the Data

Repository.

7. Finally the Application Service creates a response with

data attached and sends it to the client.

3.2 Policy-based System with Privacy Policy Fail-

Safe
In this work we are interested in the case where a failure in

this procedure occurs. Such a failure may result in a

security breach, e.g. when the output data is sent to the

wrong recipient. Possible causes of failure might include

policy contradiction, human error, software malfunction,

etc. To mitigate against the effect of system errors causing

security breaches, we specify three main criteria for

outgoing message verification:

1. Permit recipient: This criterion checks whether the

recipient has the privilege to obtain the data attached

in the response message. Therefore the information is

only sent to the clients who have the right to receive it.

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 178

2. Channel information: This criterion guarantees

that the response message is sent through the

correct secure channel corresponding with the

recipient. For this purpose, the channel

information is verified before sending out the

response.

3. Data content: Since the identifiable data is very

sensitive information, this criteria assures that this

information complies with the privacy law.

With these three criteria, we can be sure that even

if policy contradiction, software malfunction and

human error, etc. occur, the outgoing message is at

least sent to a permitted client via the right secure

channel with the data content that conforms to the

privacy law.

Our proposal for a modified and enhanced policy-

based system is shown in Fig. 2. This new system

includes a Privacy Policy Fail-Safe device (PPFS) and

a Channel Information entity.

For the PPFS, we have applied the concept of Fail-

Safe whereby the outbound message is verified

according to the PPFS privacy rules and appropriate

actions are taken such that any prohibited situation

will never happen. The PPFS is also based on policies,

but these are much simpler and easier to manage

compared to the ones employed in the policy

enforcing engine. It does not check every case. Instead

the verification occurs only for unacceptable

situations, which results in simpler policies. When any

conflict is detected, the PPFS creates an error report

and sends it to the administrator.

Policy Enforcement

Point (PEP)

Request Response

Privacy Policy

Fail-Safe (PPFS)

Application

Service

Data

Repository

Service System

Policy Decision

Point (PDP)

Policy Enforcing Engine

Encryption/Decryption Layer

Authentication

Authorization

Support (AAS)

(1)

(2)

Identity

Check

(3) Allow? (4) Decision

(5)

(6)

(7)Channel Information

Error

Report

Figure 2: Policy-based System with PPFS

We have also introduced the channel information

that is used to avoid errors in sending out the data to

the wrong channel. Such a problem is likely to happen

when the requester wants to receive data through

different communication channels. The channel

information repository stores channel related

information and in particular the other end-point of the

channel. These will be checked by the PPFS when there is

an outgoing message with data contained coming out from

the application service. The channel related information is

collected from the Encryption/Decryption Layer.

These two entities will be described in detail in the

following subsections. Note that we consider only the case

of an outgoing message with privacy related data.

3.2.1 Privacy Policy Fail-Safe Architecture

Fig. 3 shows the components inside the PPFS. It consists

of four entities which are Fail-Safe Policy Enforcement

Point (Fail-Safe PEP), Fail-Safe Policy Decision Point

(Fail-Safe PDP), Fail-Safe Enforcement Point and Fail-

Safe Policy Access Point (Fail-Safe PAP).

Figure 3: Privacy Policy Fail-Safe Architecture

The Fail-Safe PEP handles the verification of the

response from the Application Service. When there is data

contained in the response message, it extracts the

necessary attribute values and delivers them to the Fail-

Safe PDP. After receiving the result, it either sends the

related attributes together with the policies which do not

comply with each other to the Fail-Safe Enforcement Point

or forwards the response message with optional

obligations to the client (8).

The Fail-Safe PDP decides the result either “yes” or

“no” using attributes from the Fail-Safe PEP and policies

from the Fail-Safe PAP.

The Fail-Safe PAP is a repository containing all

policies such as legislations which cannot be overwritten

and privacy related obligations (sticky policy) which can

be partly defined by the authorized users as shown in

dashed line in Fig.3.

The Fail-Safe Enforcement Point creates an error

report which will be sent to the administrator when it

receives information from the Fail-Safe PEP.

Fig. 4 shows the flowchart of the PPFS. Once there is

a response message from the Application Service, the Fail-

Safe PEP checks the message whether there is data

attached. If there is no data, it forwards the response

message to the client. We do not consider messages

without data since they have no severe effect on the

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 179

privacy issue. If there is data contained, the Fail-Safe

PEP extracts the necessary attributes and sends them

to the Fail-Safe PDP for verification. The Fail-Safe

PDP queries appropriate policies from the Fail-Safe

PAP to use for its decision. If the decision from the

Fail-Safe PDP is “yes” for the recipient permission,

channel information and restricted data content check

sequentially, the privacy related obligations may be

attached with the response message before sending it

out to the client. If the answer is “no”, meaning that

either the recipient has no right to obtain the data,

channel information mismatches or identifiable data

content is not protected, the Fail-Safe PEP safeguards

the data by not transferring the response message to

the client. Instead it sends the related attributes

together with the policies which do not conform to

each other to the Fail-Safe Enforcement Point. The

Fail-Safe Enforcement Point uses this information to

create an error report which is sent to the

administrator.

Figure 4: PPFS flowchart

3.2.2 Channel Information
Channel information is a logical (or virtual) set of data

that contains records about the different

communication channels that can be used to contact

external communication partners (end-points)

securely. A channel may be as abstract as a public

key, belonging to a known communication partner or

as concrete as an existing IPsec security association or

TLS connection. Each logical channel record is

indexed by a unique channel index (ch_idx), and

corresponds to an authenticated identity (end-point)

and contains further information about the channel

type, the addressing information of that channel (IP-

address, Port, etc.) depending on the type of channel. The

Channel information may be seen as a dictionary, that may

be used either to decide which channel to use to contact a

given communication partner, to decide who has sent a

given message or to decide to whom a given channel will

deliver information.

The channel index field identifies the channel that the

end-user employs to contact the service. In an

implementation, it may depend on the communication

means such as TLS, IPSec and WS-Security. For these

cases, their channel indexes can be session ID, security

parameter index and public key respectively. The end-

point indicates the username (could be an authenticated

pseudonym) of the client. The Channel type field shows

the channel type and/or address of which the message is

transmitted. An example of channel information is shown

in Table 1 below:

Table 1: Channel Information

Channel Index End-point Channel type
Public Key Bob MMS:0179-1468302

SessionID Bob TLS:Socket

Public Key Alice Email:Alice@yy.com

From this table, Bob established two connections i.e.

wireless using his private key to secure the data and TLS

to contact the service while Alice established a connection

i.e. Email using her private key to secure the content.

The channel information is updated each time that a

new logical channel is being constructed, updated or

deleted. This happens when a new key agreement is run

(like IKE or TLS-handshake) or when keys are being

enrolled with the server.

3.2.3 Privacy related Obligations
To provide more privacy, the PPFS introduces sticky

policies appended to the response message, which are to

be understood as obligations by the recipient. This sticky

policy can be categorized in several levels according to the

data. Because the obligations are provided by the client, it

should have default obligations for high sensitive data so

that we can avoid the case of a naïve client who is not

aware of it.

3.2.4 Error Report
Since the Fail-Safe PEP examines the message step-by-

step i.e., permit recipient, channel information and data

content, it is thus able to show in a certain degree where an

error has occurred which helps in fault analyzing and error

correction. We have specified the structure of the error

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 180

report in XML schema. Only the report for channel

information error is presented below due to the

limitation of space. Each report denotes a policy and

attributes which are not compliant with each other.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="policy" type="xs:string"/>

 <xs:element name="end_point" type="xs:string"/>

 <xs:element name="channel_index"

type="xs:string"/>

 <xs:element name="channel_type"

type="xs:string"/>

 <xs:element

name="time_stamp"type="xs:dateTime""/>

…

 <xs:element name="permit-

recipient">…</xs:element>

 <xs:element name="channel_information">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="policy"/>

 <xs:element ref="channel_index"/>

 <xs:element ref="end_point"/>

 <xs:element ref="channel_type"/>

 <xs:element ref="time_stamp"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="data-content">…</xs:element>

 <xs:element name="error">

 <xs:complexType>

 <xs:choice>

 <xs:element ref="permit-recipient"/>

 <xs:element ref="channel-

information"/>

 <xs:element ref="data-content"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

</xs:schema>

4 Example
Below is an example of an Electronic Health Record

(EHR) service in which the PPFS is integrated. The

EHR service is a service that provides medical records

of clients who are registered with it. The medical

record is divided into several categorizes which the

clients can choose to conceal part of the data. After

registration, each client obtains a username and a

token which is used to identify himself during the

authentication process. In this scenario, Bob requests

his medical record via EHR service website using TLS

and wants to receive the data on his PDA (MMS).

Since sending data via MMS is not secure, the EHR

service uses Bob’s public key to encrypt the data

before sending. However due to some software failure,

the wrong public key is selected during the service

process. For the EHR service without PPFS, this error

cannot be realized. The result is that the owner of the

private key corresponding to this public key can read the

data. With the add-on PPFS, this problem is detected and

the response message is prevented as shown in Fig. 5.

Additionally, an error report is created and is sent to the

administrator.

Figure 5: A scenario of EHR service with PPFS

When the response message is sent from the

Application Service, the following checking sequences

take place:

1. The PPFS verifies the message with its policies which

can be described into four steps. Note that for the other

cases which are not specified in the policies, we assume

the answer to be “yes”. Each step is performed in sequence

by checking with policies as follows:

• First, policy for permit recipient check.

permission(recipient, data_category) = false

→ answer = no

• Second, policy for channel information check.

end-point(ch_idx(response)) ≠ recipient

→ answer = no

• Third, policy for data content check.

item(data)∈ identifiable_item_list

→ answer = no

• Finally, which requirement will be attached in the

response message is governed by obligation policies.

The first policy is for data with concealed item while

the other is for data without concealed item.

item(data)∈concealed_item_list(data)

→ attach(obg_level1)

item(data)∉concealed_item_list(data)

→ attach(obg_level2)

2. When the wrong secure response channel is detected, an

error report is created. This report denotes that the

response message corresponding to recipient Bob contains

wrong channel information after checking with a policy

stating in the report. This assists in narrowing down the

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 181

target domain for the administrator to find and correct

the error.

<error>

 <channel_information>

 <policy>…</policy>

 <channel_index>public_key</channel_index>

 <end_point>Bob</end_point>

 <channel_type>MMS:01791468302</channel_type>

 <time_stamp>2006-08-14T17:34:00</time_stamp>

 </channel_information>

</error>

5 Advantages of PPFS
The PPFS has a number of advantages over the

existing policy-based system. These advantages are

simpler policies, permit recipient checking to assure

the permission of the recipient to obtain particular

data, channel checking to avoid sending to the wrong

channel, effective error report mechanism to ease error

correction, additional obligations to obtain more

privacy, and added security due to extra checking of

the response message.

The policies at PPFS are much simpler than at the

Policy Enforcing Engine in several aspects:

• No identity proving – We have not specified the

PPFS to perform identity proving, since it

concerns only the outgoing message.

• Less sophisticated constraints – not checking all

attributes and not applying to all cases. Since the

PPFS policies are specified to govern for

forbidden cases, only some related constraints,

some important attributes and critical situation are

concerned.

• Not administrated. – Compared with the policies

from the policy enforcing engine changed from

time to time, the PPFS policies are not altered

except for some part of the sticky policies which is

trivial.

6 Conclusions
Due to possible causes of system failures which can

result in a privacy breach, we propose the Privacy

Policy Fail-Safe device to handle these problems in

safe state. Our device aims to verify the outgoing

message containing sensitive data and to make the

system robust against critical privacy breaches in the

system. We assure that the critical prohibition case

will never happen by checking three criteria. We have

also presented an example of the EHR service with PPFS

integrated.

Our main contribution is the proposal of a novel

system architecture for a policy-based system. The main

advantages of our proposed scheme are the added security,

the tolerance to policy failures, channel checking, recipient

permission check, the additional error report mechanism

and also the fact that our solution can be used as a simple

“add-on” feature in the design of secure systems.

The medical application is a promising area which

meets our interest. After implementing the PPFS, we then

plan to integrate it with the electronic health record service

system and specify its policies for this service.

References:

[1] The European Parliament and the Council of the

European Union, Directive on privacy and electronic

communications, Official Journal of the European

Communities, 2002.

[2] Department of Health and Human Services, Standards

for Privacy of Individually Identifiable Health

Information; Final Rule, Federal Register, Vol. 67, No.

157, 2002.

[3] M. Lubaszewski and B. Courtois, A Reliable Fail-Safe

System, IEEE Transactions on Computers, Vol. 47, No. 2,

1998.

[4] T. Jaeger, X. Zhang and A. Edwards, Policy

Management Using Access Control Spaces, ACM

Transactions on Information and System Security, Vol. 6,

No. 3, 2003, pp. 327-364.

[5] J. H. Abawajy, Fault-Tolerant Scheduling Policy for

Grid Computing Systems, In Proceedings of the 18
th

International Parallel and Distributed Processing

Symposium, IEEE Computer Society, 2004.

[6] D. Essamé, J. Arlat, D. Powell, Available Fail-Safe

Systems, In Proceedings of the 6
th
 IEEE Computer Society

Workshop on Future Trends, 1997.

[7] J. Reason, Human Error, Cambridge University Press,

Cambridge, 1990.

[8] A. Westerinen, J. Schnizlein, J. Strassner, M.

Scherling, B. Quinn, S. Herzog, A. Huynh, M. Carlson, J.

Perry, and S. Waldbusser, Terminology for Policy-Based

Management, RFC 3198, 2001.

[9] B. Finance, S. Medjdoub and P. Pucheral, Privacy of

Medical Records: from Law Principles to Practice, In

Proceedings of the 18
th
 IEEE Symposium on Computer-

Based Medical Systems, 2005.

[10] Mail2World Inc., Email FailSafe Policy Enforcement

Service, Email FailSafe Service,

http://www.mail2world.net/net/services/EFPES.asp.

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 182

