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Abstract: - The study analyzes the energetic aspect of the pole vault, training in the  athlete’s strategy, near by 

pole’s compressing postcritical, the application of a couple of pole’s bending, maintaining verticality in the 

negative acceleration field. The study evaluate the contribution at the elastic potential stored in the pole by 

application the couple and the pole’s deformations in this loading states with the purpose to identify the jump. 

The couple’s necessary intensity is evaluated from the condition that at the pole’s fixing end in the box, the 

moment to be null. Identify the difficulty on the deformations is caused by the differentials, hard to be showed 

by measuring. The access to the information upon this loading’s component remains in the essence the jump’s 

kinogram, the time to maintain verticality in the negative acceleration field. 

 

Key-Words: - Pole vault, Couple of pole’s bending, Kinogram, Negative acceleration fields, Pole’s 

deformations, Articulated rigid bodies, Combustion law Vibe, Compressing postcritical force. 

 

1   Introduction 
A simple calculation refering to the pole vault of an 

world champion since 1984, Serghei Bubka, shows, 

regarding to his pole’s vault energetics, that he 

applied a new strategy in his performance of 6.3 m, 

extraordinary at that moment. For v = 9.5 1−⋅ sm , 

from the necessary potential energy, for the 

performing vault,  the difference of energy is 13.1%! 

     S. Bubka feed into this energy, astonishingly, by 

application a couple C in the first 13/64 s, from the 

jump who last about 65/64 s, showed schematically 

in fig.1. 
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Fig. 1 The vault’s model, calculation of the pole’s 

deformations after Landau [1], on the Griner’s 

arrangement [2] (jumps of Tadeosz Slusarski, 1968 

and Serghei Bubka, 1984) 

2   The model of pole’s deformation 

suggested by Hubbard 
Hubbard [3] attaches to the pole, a longer bar, over-

compressed, so the end from the box, A0 , to be 

retained in balance only with an over-compressing 

Force, presented in Fig. 2, 3. 

     Hubbard [3] opens the way to the importance of 

pole’s loading with a bending Moment by 

applicating a couple. The identification, who 

stimulate the real pole’s deformation, can’t be build 

on the asymmetrical angles of contingency from the 

two ends, because the real deformations have 

practically a constant beam of  curvature! 

     Griner [2] had build in 1984 the arrangement 

trained in modeling showed in Fig. 1. He gived 

importance to the Moment’s loading, but his tries to 

explaine the performance in this way, were not 

accepted by that time trainers! 
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Fig. 2 The over-compressed bar of Hubbard attached 

to the pole 
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Fig. 3 If F moves from A1 to A2 and is inserted the 

couple M in this section, so that the Moment from 

the box of A0 to be zero 
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Fig. 4 The three pole’s deformations, for the 

concentrated Force, couple and lifting screw. The 

last two practically are overlapped, because of the 

couple’s intensity  who dominate the effect of the 

compressing postcritical Force 

 

The Balance of the bending Moment, the Hubbard’s 

lifting screw component, applied at the pole’s end, 

in the elastic potential, and the one with postcritical 

compressing. 
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Fig. 5 The pole like Hubbard’s bar, loaded with 

1=F  and 162.1=C  so that in the bearing to be 

simple bear, only with friction! Then the 

mechanical’s work fraction during the jump, 

inserted by the couple C in pole, will be 67.1% ( fc ) 

from the deformation’s elastic potential, the rest of 

32.9% ( fc−1 ) is associated to the postcritical 

compression. 
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3   The kinematics study of two 

articulated rigid bodies 
The columns approximation was executed, 

absolutely the same, like approximation of Burcă [1] 

with two duals combustion law Vibe [3,4]. We 

accentuate one more time, how easy can be realized 

an excellent application of this exponential functions 

on arrangements or filmed images readings. In 

consequence, we have access to the speeds and 

mostly of the angular accelerations of the two rigids, 

and final to the inertness forces developed by 

athlete. 

     The dynamics control of the jump becomes 

immediately accessible, lighting to good 

performances approximation of this test in the 

developed forces margins by an athlete trained in the 

spirit of this obstruction strategy of rotation in the 

strong negative acceleration jump field, realizing a 

supplementary loading by pole’s bending. 

     Combustion law Vibe, in interval [0,1]: 
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Combustion speed Vibe, derivative with t: 
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Combustion acceleration Vibe: 
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Fig. 8 Inferior body position (II) 
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Fig. 10 Angular speed (I) 
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Fig. 11 Angular speed (II) 
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Fig. 12. Angular speed (III) 
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Fig. 13 Angular speed (IV) 
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Fig. 14 Angular acceleration (I) 
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Fig. 15 Angular acceleration (II) 
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Fig. 16 Angular acceleration (III) 
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Fig. 17 Angular acceleration (IV) 
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Fig. 18 Extension by interpolation (I) 
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Fig. 19 Extension by interpolation (II) 

 

 

4   Conclusions 
Increasing with 13% the energy stored in the pole, 

towards the one released from the jumper’s running, 

it is necessary the application enduring≈  13/64 s, 
≈ 65/64 s, the approximate time of the jump, till 

after the second position from fig.1.The jumper must 

not give up to the inertness Force, the negative 

acceleration field specific, in what he is sinking, 

being one with the pole at the 0.75 m, just to apply 

the couple C. 

     The training only in this way brought to S. Bubka 

(1984) the surprising medal. 

     T. Slusaraki (1978) didn’t resisted to oppose the 

inertness in the negative acceleration field about ≈≈≈≈  

5/64, fig. 1. 

     The major difficulty to identify the pole’s loading 

state from analyzing the deformed filmed image is 

because the couple C necessary to resist the solid’s 

rotation in the strong negative acceleration field is 

very big, hard to defeat. 

     But a couple of bending so big, hides by the bar’s 

bending the effect of compressing postcritical 

induced by the inertness force. Because of that 

reason appears the practical impossibility to identify 

the loading state. The bending and compressed pole 

with the screw in contradistinction with the simple 

bending circular, by the couple, can not be 

practicaly noticed. The two deformed are practically 

congruent, like we tried to show in the fig. 4, and 

also because of the big intensity of the bending 

couple, all the deformations have one symmetrical 

axis, so they are similar. The images from fig. 2, 3, 

used at the significant illustration of the Hubbard’s 

concept are too thin, the bar is too flexible to be 

used in sports. We do not know any techniques to 

measure exactly the image’s deformation’s beam of 

curvature. Possible remains the tensometer’s 

measure, but this one brings many dificulties too. 

The sportsman’s and the coach’s honesty remains 

interesting arguments. 
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