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Abstract: - Optical intensity distributions, cut off frequencies and propagation constants for the low-
order modes of Thermally-Diffused Expanded Core (TEC) Fibers are demonstrated by numerical analy-
sis based on Galerkin’s method. A set of orthogonal Laguerre-Gauss functions is used to calculate the
spectral dependence of effective indices and mode fields of LP-modes. Results are compared with and
shown to be accurately approximated by those obtained by an one-parameter variational method.
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1 Introduction

Transformation of modal field diameters
(MFD) in single-mode fibers (SMF) is an impor-
tant technology [1] in the area of optical commu-
nications and optical sensing. For example, the
matching of field diameters between dispersion-
shifted fibers and erbium doped optical fibers in
amplifiers, is highly desirable to reduce splicing
losses. Local expansion of field diameters is es-
sential for the integration of fiber in various op-
tical devices such as isolators, filters and optical
switches [2,3]. The technology is also useful for ef-
ficient coupling between SMF and laser diodes [4].
Thermally-diffused expanded core (TEC) optical
fibers have been widely used for such applications
[5].

A TEC fiber has an enlarged mode field diam-
eter (MFD) obtained by heating a single-mode
fiber (SMF) locally at a high temperature (∼
1300 − 1650 oC) and diffusing the germanium
dopant into the core [6]. The core expansion rate
depends on the heating temperature, the heating
time and the dopant intensity in the fiber core.
The TEC fiber has the feature that although ther-
mal diffusion changes the refractive-index profile,
the normalized frequency does not change and
hence the single mode condition is maintained

through the process. The maximum MFD ever re-
ported is 40 µm, at the wavelength λ = 1.55 µm,
without reduction in the cladding diameter of the
fiber [7]. Modal field profiles, diffraction losses in
a single-mode TEC fiber as well as splice losses
between two TEC fibers have been experimen-
tally obtained [8] and theoretically analyzed[9,10].
There is a little information, however, concern-
ing the propagation characteristics of low-order
modes in a TEC fiber, if they are excited.

In this paper, we analyze the modal properties
of low-order modes in TEC fibers using Galerkin’s
numerical method as well as a variational method.
The paper is organized as follows: In Section 2
we briefly present the refractive index profile in a
TEC fiber under isotropic thermal diffusion. In
Sections 3 and 4, the Galerkin’s method and the
variational analysis are described, respectively, in
order to calculate the propagation constants and
modal fields of low-order modes in a TEC fiber.
Results of the above calculations are presented in
Section 5 using normalized parameters that can
be used in designing TEC-fiber integrated optical
devices under the condition of excitation of low-
order modes. We conclude with a summarizing
Section 6.
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2 Refractive Index Profile of a
TEC Fiber

A schematic illustration of a thermally ex-
panded core fiber is given in Fig. 1. This shows
that a TEC fiber has core diameter 2A and is fab-
ricated from an initial step index fiber with core
diameter 2α. The heating region is considered
very long and the expanded core region uniform
in the longitudinal direction. We assume that the
refractive-index profile in the expanded core re-
gion is proportional to the dopant profile and can
be expressed as:

n2(r) = n2
cl + (n2

co − n2
cl)u(r, t) (1)

where u(r, t) is the Germanium dopant concen-
tration as a function of the radial distance r and
heating time t. Also, nco and ncl are the refractive
indices of the core and the cladding respectively.

Fig. 1: Schematic illustration of a thermally ex-
panded core fiber.

A Gaussian distribution function of the dopant
u(r, t), after the heat treatment, can be obtained
as an exact solution of the diffusion equation in
cylindrical coordinates, assuming an infinite heat-
ing region with a line source and as initial dopant
concentration a delta function [6]. Also the mass
conservation of the diffusing atoms is taking into
account. Finally, following the formalism used in
the study of graded index fibers, the refractive
index profile of the TEC fiber can be written as
[10]:

n2(r) = n2
co[1 − 2∆f(r)] (2)

where ∆ = (n2
co − n2

cl)/2n2
co and

f(r) = 1 − (α2/A2)e−(r2/A2) (3)

where A =
√

Dt is defined as the core radius of
the fiber after the heat treatment and D is the
diffusion coefficient of Ge dopant. Therefore, the
variation of refractive index profile under condi-
tions of isotropic thermal diffusion has a Gaussian
radial dependence.

3 Galerkin’s method

In the weak-guidance approximation, when the
variation in refractive index is small, the fields
and propagation constants are determined by the
scalar wave equation, rather than the full set of
Maxwell’s equations. The scalar wave equation
of a circularly symmetric optical fiber for a given
azimuthal mode number m can be written in polar
coordinates as [11]

d2E(r)
dr2

+
1
r

dE(r)
dr

+
(
k2

0n
2−β2−m2

r2

)
E(r) = 0(4)

where E(r) is the amplitude of the scalar field,
k0 = 2π/λ is the free space wave number, n(r)
is the refractive index profile of the given fiber
and β is the propagation constant. Since there
is no analytic solution of Equation (4) for an ar-
bitrary refractive index profile n(r), a numerical
Galerkin’s method is used to find approximate so-
lutions.

In a numerical Galerkin’s method [12], the so-
lution of a differential equation is expanded with
a linear combination of analytically differentiable
orthogonal basis functions inside finite boundary.
In the present paper we use as basis functions the
well known associated Laguerre-Gauss functions
φm

i (x)

φm
i (x) =

√
i!

(i + m)!
xm/2 exp−x/2 Lm

i (x) (5)

where Lm
i (x), i = 0, 1, 2, · · ·N − 1 are the asso-

ciated Laguerre polynomials and N is the basis
number.

For the solution of Eq.(4) we define a normal-
ized dimensionless parameter

x = σr2/α2 (6)

where α is the core radius and σ is an arbitrary
positive number that affects the convergence, ac-
curacy and computational time. In our compu-
tation, σ is chosen to be 1/8. We also define a
profile function h(r), a normalized frequency V
and a normalized propagation constant b as:

h(r) =
n2(r) − n2

cl

n2
co − n2

cl

, V 2 = k2
0α

2(n2
co − n2

cl)

b =
(β/k0)2 − n2

cl

n2
co − n2

cl

(7)

Inserting Eqs.(6) and (7) into Eq.(4) yields

x
d2E

dx2
+

dE

dx
+

1
4

(V 2h − V 2b

σ
− m2

x

)
E = 0 (8)
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By expanding the mode field E in terms of the
orthogonal Laguerre-Gauss functions φm

i (x)

E(x) =
N−1∑
i=0

αiφ
m
i (x) (9)

we obtain

σ

V 2

N−1∑
i=0

αi[x − 2(1 + 2i + m)]φm
i (x)

+
N−1∑
i=0

αih
(√

x/σ
)
φm

i (x) = b
N−1∑
i=0

αiφ
m
i (x)

(10)

If we multiply both sides of Eq.(10) by φm
j (x)

and integrate in the whole space from 0 to ∞ then
Eq. (10) transforms to a system of eigenvalue
equations

[M ][Y ] = b[Y ] (11)

where [Y ] is the coefficient eigenvector and [M ] is
a square matrix with dimension of N × N .

For a given wavelength, the propagation con-
stants of all allowed modes are calculated. The
accuracy and validity of our algorithm is veri-
fied by comparing our numerical results for step-
index fibers with the available analytical results
[11]. The Galerkin’s method is generally stable
and gives accurate results when the mode is away
from the cut off region. The main advantage of
the method is its versatility in treating circular
fibers with arbitrary index profiles without signif-
icant modifications.

4 Variational method

In this section we describe a variational method
in order to obtain analytic approximations for the
modal fields and propagation constants of the low-
order modes of TEC fibers. Usually the varia-
tional process is applied with respect to the prop-
agation constant β. Instead of β we consider here
the dimensionless modal parameter U defined in
step index fiber theory as

U = α(k2
0n

2
co − β2)1/2 (12)

Then our variational expression for U2 yields[11]

U2 =
α2

∫ ∞

0

((m2

r2
+

V 2

α2
f
)
E − d2E

dr2
− 1

r

dE

dr

)
Erdr∫ ∞

0

E2rdr

Table 1
The values of the coefficients Al−1

ρ

A0
0 1 A2

0
1
4(m + 1)2(m + 2)2

A1
0 (m + 1)2 A2

1 −(m + 1)(m + 2)2

A1
1 −2(m + 1) A2

2
1
2(5 + 3m)(m + 2)

A1
2 1 A2

3 −(m + 2)
A2

4 1/4

We choose as trial functions the Laguerre-Gauss
functions [13]

E(r) = Clm(r/r0)m exp−r2/2r2
0 Lm

l−1(r
2/r2

0) (13)

where Clm is the normalization constant given by

Clm =

√
2
r2
0

(l − 1)!
(l − 1 + m)!

, l = 1, 2, 3 · · ·

and r0 is the variational parameter. The value
of r0 is found by solving the equation for the ex-
tremum value of U2

∂U2

∂r0
= 0

which finally leads to the relation

2l + m − 1 =
r2
0V

2

2α2

∫
df

dr
[E(r)]2r2dr (14)

Eq.(14) can be easily written in closed form for
the first three modes l = 1, 2, 3 that is:

2l + m − 1 = V 2C2
lm(cr0)4

r2
0

2(1 + c2r2
0)m+2

×
∑
ρ = 0

2l − 2

Al−1
ρ

(m + ρ + 1)!
(1 + c2r2

0)ρ

(15)

where c = 1/A. The coefficients Al−1
ρ are given

in Table 1. Given the solution of Eq. (15) for
r0, the corresponding value of U and hence the
propagation constant β, can be found.

5 Results and Discussion

The TEC fiber under consideration has a ther-
mally expanded core with radius A = 8 µm.
The parameters of the standard SI-SMF before
heat treatment are: relative refractive index dif-
ference ∆ = 0.3%, refractive index of the cladding
ncl = 1.46 and core radius α = 4 µm. The num-
ber of guided modes depends on the value of the
normalized frequency V which remains constant
during the heat treatment.
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We applied Galerkin’s method to determine
the propagation constants, effective indices and
modal fields of low-order linearly-polarized modes
LPml. The number of basis functions (along
the radial direction) used in our calculations was
N = 100 for each azimuthal number m in or-
der to reach convergence. We define the cut off
normalized frequency Vc to be the smallest value
of the modal parameter V for which a particu-
lar mode can propagate. At this cut off value,
U = V = Vc. There is no cut off for the funda-
mental mode LP01. The values of Vc for the next
few excited modes are given in Table 2.

Table 3 gives the calculated values of the modal
parameter U for some low-order modes based on
both Garlekin’s and variational methods and the
relative errors are determined with respect to the
results by Galerkin’s method. Our Variational re-
sults are generally larger than the numerical ones
obtain by Galerkin’s method and the relative er-
ror for each mode decreases as the normalized fre-
quency increases.

Table 2
Cutoff values of the normalized frequency Vc

calculated by Galerkin’s method.

Mode Vc Mode Vc Mode Vc

LP02 3.328 LP03 5.923 LP11 2.594
LP12 5.081 LP13 7.577 LP21 4.339
LP22 6.761 LP23 9.216 LP31 6.027
LP32 8.425 LP33 10.856

In Figures 2 and 3, we plot the modal parame-
ter U as a function of the normalized frequency V
for the first three LP1l−modes and the first three
LP2l− modes, respectively. The effective indices
as a function of wavelength for a few low-order
modes are shown in Fig. 4. When the modes are
close to the cut off, which is shown in the figure
as the region of lowest refractive index, the modes
are close to the radiation modes and discrepancies
between the two methods appear.

The mode intensity distribution of the mode
fields for the fundamental mode LP01 (Fig. 5) as
well as for the low-order modes LP11,LP21 (Fig.
6 and Fig. 7, respectively) are also calculated by
the two methods and compared. As it is seen
from Fig.5, as the wavelength increases towards
the cut off value, the variational approach gives
less accurate modal fields.

2 4 6 8 10
2

3

4

5

6

7

8

9

10

LP
11

LP
12

LP
13

Modal parameter V

M
o

d
al

 p
ar

am
et

er
 U

Fig. 2: Plots of the modal parameter U as a func-
tion of the normalized frequency V for the first
three LP1l−modes.
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Fig. 3: Plots of the modal parameter U as a func-
tion of the normalized frequency V for the first
three LP2l−modes.
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Fig. 4: Effective indices neff of the first three
LPm1−modes as a function of the wavelength.
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Table 3
Comparison of the values of U obtained using Galerkin’s and Variational methods for TEC fibers

Mode V U(Galerkin) U(Variational) Error%

1.5 1.4739 1.4790 0.347
2.0 1.9328 1.9365 0.190

LP01 2.5 2.3823 2.3848 0.108
3.0 2.8266 2.8284 0.066
3.5 3.2678 3.2692 0.043

3.0 2.9802 2.9884 0.274
3.5 3.4418 3.4474 0.162

LP11 4.0 3.8955 3.8996 0.105
4.5 4.3444 4.3475 0.072
5.0 4.7900 4.7925 0.052

4.5 4.4903 4.5000 0.215
5.5 5.4083 5.4134 0.094

LP21 6.5 6.3081 6.3114 0.052
7.5 7.1985 7.2008 0.033
8.5 8.0831 8.0849 0.022
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Fig. 5: Normalized intensity distribution of the
LP01 mode of the TEC-fiber for different wave-
lengths. The radius of the expanded core of the
fiber is A = 8µm.

6 Concluding Remarks

We have presented an efficient numerical anal-
ysis of propagation constants, dispersion rela-
tions and mode fields for the low-order modes of
Thermally-Diffused Expanded Core (TEC) Fiber.
Our analysis is based on Galerkin’s method in
cylindrical coordinates. We expanded the field of
a guided mode with orthogonal Laguerre-Gauss
functions along the radial direction.

We have also developed a variational approach
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Fig. 6: Normalized intensity distribution of the
LP11 mode of the TEC-fiber for V = 5.6. The
radius of the expanded core of the fiber is A =
8µm.

in which the mode fields are well approximated
by simple analytic functions depending on a varia-
tional parameter. Our comparative study for low-
order modes, shows that the variational results
agree well with the exact numerical results ob-
tained by Galerkin’s method. On the other hand,
for the variational analysis of higher order modes,
a series expansion of Lagueere-Gauss functions as
trial function is needed [13]. Our numerical anal-
ysis can be used in calculations of coupling co-
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Fig. 7: Normalized intensity distribution of the
LP21 mode of the TEC-fiber for V = 5.6. The
radius of the expanded core of the fiber is A =
8µm.

efficients, misalignment losses and source to fiber
coupling when low-order modes in TEC-fibers are
excited. Such calculations are applicable to the
designing of various fiber-integrated type optical
devices and micro-optical switching systems.
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