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Abstract: Dynamics modeling of the mechanical system with flexible deformation and rigid body motion are 
discussed. Regard generalized coordinate as rigid body motion degree of freedom and elastic deformation 
degree of freedom, utilize the finite element method to describe motion and deformation of elastic connecting 
rod, use Kane equation to derive the movement equation of the elastic connecting rod organization.  
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1  Introduce 

Dynamic analysis of mechanism system has been 
based on the assumption that the links behave as 
rigid bodies. Stresses in the members are assumed to 
be only due to inertia forces and external loads. 
Based on these stresses calculations the mechanism 
is designed, built, and tested. This design procedure 
is reasonably accurate if the links behave as rigid 
bodies. However, as speeds of operation become 
higher, the inertia forces become quite large and the 
links undergo considerable deformation. Under these 
conditions the rigid body assumption is no longer 
valid. The movements of mechanism system can be 
accurate simulated by taking into account the 
elasticity of the links during simulation and design 
process. Since elastic behavior in mechanism 
systems cannot be completely eliminated, 
mechanism systems would have to be actively 
controlled in order to further minimize effects due to 
elastic deflections. For such control application it is 
necessary to develop accurate models, which more 
realistically represent the actual mechanism systems. 

The modeling of mechanical system with the 
elastic links has been paid attention by people all the 
time. The work can be divided into three respects at 
present, according to its modeling way: 

The first approach [1-5] which originated earlier, 
models the elastic links as continuous systems 
possessing infinite degrees of freedom. The 
equations of motion obtained are nonlinear partial 
differential equations. This approach has been used 
to derive equations of motion, analyze and determine 
the dynamic response of the slider crank mechanism, 
which has an elastic connecting rod and rigid rod. 

In the second approach [6-18], the elastic links 

represented as discrete systems possessing finite 
elastic degrees of freedom by using methods like the 
finite element method. The advantage of using the 
finite element method to model the elastic links is 
that it provides a systematic modeling technique for 
complex mechanisms and lays the groundwork for a 
general approach for the modeling of mechanisms. In 
these works the net motion or the total motion of the 
system is considered to be a superposition of the 
rigid body motion and the elastic motion. 

A third approach [19-31] uses the Lagrange 
Multiplier technique to incorporate joint constraints 
into the equation of motion. This approach is broadly 
applicable to a large class of dynamic systems rather 
than just mechanism systems and results in a 
formulation that is general concise, and conveniently 
implemented on the computer.  

In this work, analyzes the manipulator system of 
operation with elastics in systematic way, dynamics 
modeling of the mechanical systems with rigid body 
movement and flexibility deformation are discussed. 
Regard generalized coordinate as rigid body between 
degree of freedom and elastic deformation degree of 
freedom, utilize finite element method to describe 
motion and deformation of elastic connecting rod, 
use Kane equation to derive the equation of motion 
of the elastic connecting rod. This kind of equation 
of motion can be used for analyzing industry's 
machinery operates hands. Because use the finite 
element method to modeling to the elastic pole, no 
matter which kind of complicated forms it has. 
 
2  Description of deformation of the 
element 

As shown fig.1, is an elastic mechanism system, 
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oxyz  is a system of coordinates of the inertia, 
is the system of coordinates fixed at link.  

The deformation of the operation manipulator system, 
can express with the following relation: 

i i i io x y z

=i 0ir T r  (where�  )  (1) 0 0 ∧i 1 12 23 i-1,iT = T T T T
  represents the homogeneous coordinate 
transformation matrix from link 1 to link i, is a 4×4 
matrix that  represents the rigid body translation and 
rotation translation of link i with respect to the 
reference coordinate system oxy ,and is of the 
following form: 
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Where can be written by following: To the 
operating system of the general manipulator, its 
equation of geometry restrains can be written: 

jφ

( ) ),,1(0,1 Nifi ==ϕϕφ             (4) 

Here fϕϕ ,1  show f degrees of freedom of 
system, i show systematic number of object. The 
partial derivatives of the rigid body constraint values 

iφ  with respect to the value ϕ  of  the rigid body 
degrees of freedom is definite as following: 
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Formula (5) can regard as the expression formula 
of the generalized speed that is derivated by inclusive 
condition of dynamics, so  can be written as 
following� 
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So formula (3) can be shown as following: 
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3  Description of motion of the 
element 

To the mechanism system with the elastic links, 
shown as fig.2, the elemental mass mδ in element  
on the link . Coordinate system 

e
i oxyz  is the fixed 

reference coordinate system, i i i io x y z  is local 
coordinate system, which is usually the rigid body 
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Fig.1 Description of 
deformation of the element 
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position of its center of gravity. is the  
elemental coordinate system built in the center of 
gravity of the element e. G indicates the rigid body 
position of the elemental e. 

eee zyx

l i nki

o
z

x

yi

y
l i nk1

oi

zi

xi

l i nkn

Fig.2 System with the 
elastic links 

A additional 4×4 transformation matrix is 
defined for elemental e.  depends on the constant 
orientation of element coordinate system  
with respect to the link coordinate system 

.Thus  is a constant matrix and is of the 
following form: 
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The product of the transformation matrices 
and  is used to transform the elastic 

displacement d which is measure in the element 
coordinate system to the reference coordinate system. 
This transformation matrix requires only the relative 
angular orientation of the element coordinate system 
with respect to the reference coordinate system. 
Therefore the first diagonal element of  is set to 
zero. 

oiT eR

eR

The position of the elemental mass mδ  in the 
reference coordinate system is specified by vector R. 
Vector R is made up of two components, the rigid 
body position of mδ  and the elastic displacement of 

mδ . Vector r locates rigid body position of mδ  in 
link coordinate system . Vector r is a constant 
vector. The rigid body position of 

iii zyx
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Vector d is the elastic displacement of 
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of 

eee zyx
mδ  is represented in the coordinate system  

as the matrix product .The position of 
oxyz

e
0iT R d mδ  in 

the reference coordinate system is given by: 
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0j 0jR T r T R d                        (9) 
Based on the theory of the finite element method, 

the elastic displacement d of mδ  in the coordinate 
system  can be expressed as a linear function 

of the nodal elastic displacement vector  as 
shown form:                      (10) 
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Matrix  contains the finite element shape 
functions, which relate the nodal elastic displacement, 

 the elastic displacement vector d. The nodal 
rigid body position vector  is defined that is the 
rigid body position of the nodal of the element e as 
measured in the link coordinate system . This 
is a constant vector as the rigid body position of the 
nodal in the link coordinate system  are fixed. 

Using this vector and the shape function , the 
rigid body position of the mass 
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Equation (11) holds for isoparametric finite 
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0 iT is the time derivative of and is the 
velocity vector of the elastic degree of freedom 
measured in the element coordinate system . 
The shape function   and the 4×4 matrix  
are constant matrices and are unaffected by the 
differentiation with respect to time. Using equation 
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4  The generalized partial velocity, the 
generalized partial acceleration and 
the generalized inertial force 

The rigid body degree of freedom ϕ  and the 
elastic displacement degree of freedom u are 
regarded as the generalized coordinate, and regard 

iϕ  and  as the generalized speed. Research 
equation(13-b)and(15) determine generalized  
partial speeds of the element mass 

u

mδ : 
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Neglect the little quantity of the second-order 
differentiation and keep the term of  intersect , 
have : 
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Arrangement the above formula, we have: 
(1) The generalized inertial force obtained by the 
rigid body displacement ϕ : 
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(2)The generalized inertial force obtained by the 
elastic displacement ϕ : 
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5  The generalized active force and the 
dynamics equation of motion [32,33] 

By taking into account an arbitrary point of an 
arbitrary element e of body j, the stress-strain 
relation can be expressed as 
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component. 
Using equation(22), we have 
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The stress is denoted by: [ ]11 22 33 12 23 31, , , , ,σ σ σ σ σ σ .Τ=σ  
The generalized active force thus induced (σ�ε) can 
be written as following two competent: 
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matrix)� .Where  is the elastic 

stiffness matrix, K
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G is the nonlinear constructive 
stiffness matrix. The generalized active force can be 
written as below:  

e G= +F F F                         (24) 
According to Kane’s equation, the dynamic 

equation is written as: F*+F=0.              (25) 
                      

 
6  Conclusions 

This concludes the application of Kane equation to 
derive the equations of motion at the element. This 

development allows for the interdependence of the 
rigid body and the elastic motion. The elastic links 
are modeled by using the finite element method. 
These equations in their final form can be used for 
realistic modeling of links mechanisms with the rigid 
body motion and the elastic motion having closed 
and opened loop multiple degree of freedom chains 
and geometrically complex elastic links. 
  The system equations will be published separately. 
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