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Abstract: The meshless manifold method based on circle covers is made of the partition of unity method and 
the finite cover approximation theory which provides a unified framework for solving problems dealing with 
both continuums and dis-continuums. In the method based on circle covers, two cover systems are employed. 
The mathematical covers system provides the nodes for forming finite covers of the solution domain and the 
partition of unity functions. The physical covers system describes geometry of the domain and the 
discontinuous surfaces in the domain. The shape functions in the method are derived by the partition of unity 
and the finite covers approximation theory. In meshless method based on circle covers , the mathematical 
finite cover approximation theory is used to model cracks that lead to interior discontinuities in the 
displacement. Therefore, the discontinuity is treated mathematically instead of empirically by the existing 
methods. The approximation functions and the equations of the coupling method are developed in detail in 
the paper. The validity and accuracy of the meshless manifold method are illustrated by numerical examples. 
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1. Introduction 
In fracture problems, for instance, elements edges 
provide natural lines along which cracks can grow 
[1]. In these classes of problems, the finite element 
methods require remeshings to ensure that element 
boundaries coincide with moving discontinuities 
such as crack growth; projection or remapping of 
field quantities accompanies each remeshings, 
which can degrade the solution further. So an 
attractive option for such problems is meshless 
computational methods, due to their flexibility in 
solving boundary value problems, especially in 
problems with discontinuities, or with moving 
boundaries, or with severe deformations, which has 
been popularized in recent years.  

In meshless methods the discretization is purely 
nodal, and the finite element concept of connectivity 
between elements is not introduced. The shape 
functions are constructed on a given nodal 
arrangement in the solving domain. By basing an 
analysis on nodes or particles, it demonstrates 
flexibility in modeling complex discontinuities [2,3]. 
It also avoids the distortion of mesh when extreme 

large deformation is encountered [4], and provides 
an efficient means for addressing high gradient 
problems such as that occurred in strain localization 
[5]. The advantage of meshless methods by 
Belytschko [6,7] is that it is possible to model 
arbitrary growth of cracks without remeshings and 
adaptive refinement at the crack tip is easily 
accomplished. With adequate refinement, stress 
intensity factors can be computed accurately. But 
the disadvantage of the method is that test functions 
have nearly constructed by the original visibility 
criterion [8] which is empirical method to model 
cracks leads to interior discontinuities in the 
displacements, especially arbitrary cracks. 

To overcome shortcomings of discontinuities in 
the meshless method, the meshless method based on 
circle covers is developed in the paper. The method 
is based on the partition of unity method and the 
finite cover approximation theory in the 
mathematical manifold. The basic idea of the 
method is derived from the numerical manifold 
method [9] which is extended to meshless method 
by circle covers in this paper. Two cover systems are 
employed in the meshless manifold method. The 
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circle mathematical cover system provides the 
nodes for forming finite covers of the solution 
domain and the partition of unity functions; and the 
physical cover system describes geometry of the 
domain of the problem and the discontinuous 
surfaces in the domain. The shape functions in this 
method are formed by the partition of unity and the 
finite covers approximation theory, hence the shape 
functions are not affected by discontinuity of a 
domain. Therefore crack problems can be treated 
better. For local problems, the shape functions are 
more effective than that in other methods. As a 
result the method can avoid the disadvantages of 
other meshless methods in which the tip of a 
discontinuous crack is not considered. Compared 
with the conventional numerical manifold method 
[9], the shape of the mathematical covers can be 
selected easily, and the finite cover approximation 
and the partition of unity functions are formed with 
the influence domains of a series of nodes. 
Compared with the conventional meshless method, 
the test functions are not affected by the 
discontinuity in the solving domain because of the 
finite covers approximation theory. Therefore this 
method can overcome difficulties in the 
conventional meshless methods for problems with a 
discontinuous domain.  

2. A Brief Review of Finite Covers in 
Manifold Method 

Following the formulation of the manifold method 
proposed by Shi [9], we present how the use of 
meshless finite covers instead of finite element 
covers is effective for modeling discontinuities and 
its growth in strain and displacement. 

2.1 Mathematical and physical covers 
Based on finite cover systems, the newly 

developed “manifold method” has the potential to 
meet more engineering requirements. With 
reference to the schematic presented in Figure 1, we 
provide the definitions of domains and covers. A 
domain where mathematical functions independent 
of physics are introduced is called a mathematical 
domain, whereas a domain where physical 
quantities are defined is referred to as a physical 
domain. The mathematical domain can be 
constructed as a union of a finite number of patches, 
which can be overlapped either partially or totally. 
These patches are called mathematical covers which 
are chosen by engineers and may consist of finite 
overlapping covers which occupy the whole 
material volume. The conventional meshes and 
regions such as regular grids or finite element 

meshes can be transferred to finite mathematical 
covers. In the description of the problem, the 
mathematical domain or the union of mathematical 
covers need not coincide with the physical domain 
which is called the physical mesh includes the 
boundaries of material volume, joints, blocks and 
the interfaces of different material zones. The 
constantly changing water surfaces are also part of 
the physical meshes. The physical mesh represents 
material conditions which cannot be chosen 
artificially. The physical cover system is formed by 
both mathematical covers and physical meshes. If 
the joints or block boundary divide a mathematical 
cover to two or more completely disconnected 
domains, those domains are defined as physical 
covers. Therefore, physical covers are subdivision 
of mathematical covers by discontinuities. The 
manifold method is more suitable to compute large 
deformations, moving boundaries of both 
continuums and jointed or blocky materials. The 
above concept of cover systems is illustrated in the 
example shown in Fig. 1. The circle and the 
hexagon mesh are arbitrarily selected as the 
mathematical mesh, as shown in Fig. 1a. Fig. 1b 
shows the structure containing a crack that defines 
the physical mesh. The common region of the 
mathematical cover IM  and the physical mesh 

][αΩ  forms the physical covers, and is denoted by 

 in Fig. 1.  ][α
IP

 
 
 
 
 
 
 
 
 

a) Mathematical mesh 
 
 
 ]1[Ω
 
 ]2[Ω 
 
 
 
 

b) Physical mesh 
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c)  Overlapping two meshes 
 
 
 
 
 
 
 
 
 
 
 
 
 

d) Physical covers 
Fig. 1 Mathematical and physical covers 

2.2 Approximation based on finite covers 
In the following, the approximation properties 

facilitated in the meshless manifold method is 
presented assuming the one-dimensional version of 
the problem see [10] in detail. 

Then the displacement  is 
approximated as 
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where  is the number of physical covers 
associated with mathematical cover  and 

 is cover displacement functions corres 
-ponding to the physical cover .            

In
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3. Cover Functions and Weight Funct 
-ions 

In this section, the construction of the basis 
functions and test functions are described and some 
properties of these functions are reviewed in the 
meshless manifold method. One key idea used in the 
construction of the meshless manifold method is 
that of a finite cover approximation theory in 
manifold method and the partition of unity function. 

The finite cover approximation theory formed the 
sub-covers which constructed the approximation 
function by the partition of unity. 

Mathematical cover M1

Mathematical cover M2

3.1 The partition of unity 
nR , Let M  be open bounded domain in

1, 3n 2or=  and  denote an arbitrarily chosen 
set of  points 

NQ
MxN I ∈  referred to as nodes 

MxxxxQ ∈INN = },,,{ "

M NI ,,1"

21       (2) 
We associate with the set Q  a finite open 

sub-cover , 
N

I = , which denotes a set of 
solid circles, balls or spheres which called the finite 
cover hereunder. Ix  and  are the center and the 
radius of the sub-cover 

Ih

Physical cover [1]
1P  Physical cover [1]

2P

Physical cover [2]
1P  Physical cover [2]

2P

I , respectively. Hence  
},1,{ IM ", NIN = =ℜ  constitutes an open cover 

of M  

I
I

MM ∪
1=

N
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where 
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A class of functions N αφ αΦ = = "
ℜ

 
subordinated to the sub-cover  is called a 
partition of unity if it possesses the following 
properties: 

N

∑ = 1)(xφ

0)( =x
I

I              (4) 
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The function Iφ  is called the partition of unity 
function. 

In numerical manifold method, Shi [15] used 
the term “weighting function”, which has the 
following properties: 

( ) 0 ;w ≥ ∈Ω⎧ x x

N

∈Ω

( ) 0
I I

I Iw⎨ = ∉Ω⎩ x x
(7) 

1

( ) 1I
I

w
=

=∑ x x         (8) 

 The properties content with the properties of 
the partition of unity, hence the numerical manifold 
method called the partition of unity based on mesh. 

3.2 Approximation functions of the meshless 
manifold 
We used the basic idea of the approximation based 
on finite covers in the section 2.2, for a continuous 
domain, the numbers of physical covers equal to one 
of the mathematical covers. The shape functions are 
the partition of unity functions of the local covers by 
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Eq. (1), the approximation function, , can be 
expressed as 

( )hu x

∑
=
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           (9) 

where iφ  is the partition of unity function of 
the local cover ,  is the value of the function 
at node . 

iM u
i

i

The same above process, for a discontinuous 
domain of two-dimensional problem, one cover is 
divided into two sub-covers at a discontinuity. The 
partition for sub-covers is also separated so that 
there is one partition associated with each sub-cover. 
To facilitate a sub-cover partition, let sub-cover 

jM thj Mi  be the  sub-cover of . The partition of 
unity function for 

i
jM )(xjφ

)()()( xxx jj δφφ ⋅=

i , denoted as , is given 
by 

i

          (10) iii

where )(xiφ  is the partition of unity function for 
cover i, and 

j
i

j
i Ω∈= xx 1)(δ       (11) 

j
i

j
i Ω∉= xx 0)(δ       (12) 

A geometric interpretation of the construction 
of  is illustrated in Fig. 2. The approximate 
functions are the partition of unity function 
multiplied  to the discontinuous domain.  

( )j
iδ x

( )j
iδ x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A sub-cover and its partition of unity function 

With the introduction of sub-covers, i.e. more 

than one covers subordinated to one node, the 
meshless method based on circle covers can model 
a discontinuous function over a disjoint local cover 
by the finite cover technology. To illustrate this, Fig. 
4 depicts a single cover  with two sub-covers 

 and . Since each of the sub-cover has an 
independent cover with its own partition of unity 
function, a discontinuous approximation function as 
depicted in Fig. 3, is obtained by 

iM
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where,  and  are the nodal values associated 
with  and , respectively. Hence, to the 
discontinuous domain,  by the Eq. (1) can be 
expressed as 
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Fig. 3. Dividing sub-coverΩ  into two sub-covers  and 
 and its partition of unity function 

i
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Given a cover },,1,{ NIM IN "==ℜ  we can 
then define a partition of unity and local 
approximation functions by using Shepard functions 
or Moving least square as )(xiφ , and local 
approximation spaces  on the cover . m

iV iM
In summary, the above construction can be 

expressed as follows 
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where  is the weight function. This process is 
further explained by the following algorithm. 

iw

Algorithm: 
1. Providing a set of points ( 1, , )ix i = " N  to the 

resolve the domain ; Ω
2. Forming mathematical covers with the centers ix  

and the radii ; ih
3. Forming the local physical cover (the local cover) 

 by the overlapping mathematical cover and 
the solving domain; 

iM

4. Generating the weight function  for the local 
cover ; 

iw

iM
5. Constructing the partition of unity function iφ  

for the local cover . iM
6. Formed physical covers . ][α

iP
7. Generating approximation function on each 

physical cover. 
A partition of unity can be generated by 

Shepard’s method, i.e. 
( )( )

( )
i

i
k

w xx
w x

φ =
∑

           (16) 

If we use MLS to construct the partition of unity iφ , 
it is given by 

1( ) ( ) ( ) ( )T
i iφ −=x p x A x B x      (17) 

where 
1 2( ) { ( ), ( ), , ( )}T

m=p x p x p x p x"     (18) 
( ) ( , )ij i j x=A x p p         (19) 

( ) ( ) ( )i iw=B x x p xi        (20) 
in which  is the number of terms in the basis; 

 are the monomial basis functions.  
m

( )Tp x

4. The Discrete Equation of the Meshless 
Method 

Consider a two-dimensional domain  bounded 
by . The equation of equilibrium is 

Ω
S

0=+σ ij,ij f ,     in       (21) Ω

where ijσ  is the stress tensor, if  is the body force. 
The boundary conditions are 

ij j in tσ = ,      on Sσ        (22) 
,i iu u=        on        (23) uS

where iu and it  denote the prescribed 
displacements and tractions, respectively, jn  is the 
unit outward normal to , and S Sσ  and  are 
complementary parts of  where essential and 
nature boundary conditions are prescribed. 

uS
S

The variational (or weak) form for Eq. (21) can 
be written as 

0)(
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where ∇  is the symmetric gradient operator. The 
term ( )uWδ u  is required for enforcing the essential 
boundary conditions in a meshless manifold method 
[15]. 

For linear elasticity, the strain-displacement 
equation and the stress-strain law are 

1 ( ( )
2

T= ∇ ∇ε u + u )          (25) 

:=σ D ε              (26) 
which can be used to write the weak form in Eq. (24) 
in terms of the displacements . The discrete form 
can be obtained by Eq. (14) as approximations for 

 and 

u

u δu . This leads to the system of equations  
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in which E  and ν  are Young’s modulus and 
Poisson’s ratio, respectively. 

5. Numerical Examples 
In this section, a classical problem will be solved an 
edge crack problem in fracture mechanics using the 
meshless manifold method to model discontinuous 
problems. 

A rectangular plate with an edge crack is shown 
in Fig.4a. The plate is loaded in tension at the top 
with Gpa2.0=σ  and essential boundary 
conditions are applied at the bottom of the plate. 
The following parameters are used in the numerical 
simulations: mm52=L , , mm20=D mm12=a ; 
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Elastic modulus ; Poisson’s ratio Gpa76=E
0.286μ = ; Plane strain state of deformation is 

assumed.  
The closed form solution for the crack is 

obtained by using the well-known near tip field in a 
domain about the crack tip and prescribing the 
displacements along the boundary of this field. The 
computed mode I stress intensity factors are 
compared with a finite geometry corrected value 

IK C aσ π=  where the correction is given by 
Ewalds and Wanhill [11]. 

Linear and quadratic bases with Gaussian 
weight function and a cover diameter of = 4.0 
mm are used in the numerical simulations. For 
linear and quadratic bases, a node system with 1722 
regular nodes is used to form the local covers, as 
shown in Fig. 4b.  

maxd

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) The geometric model 

 
(b)  The distributing nodes of the model 

Fig. 4 an edge crack model 
The stress intensity factor  is normalized by IK

aσ π  and the normalized  value by the linear 

and the quadratic basis functions are calculated to 
be 1.32 and 1.40, respectively. The analytical 
solution is

IK

44.1=C . The errors for linear and 
quadratic bases are 8.3% and 2.7%, respectively. It 
clearly indicated that the quadratic of basis function 
results in a higher accuracy of solution at the same 
number of node.  

The stress field in front of the crack tip is shown 
in Fig. 5 and Fig. 6. It can be seen from the figures 
that the numerical solutions agree well with the 
exact solution. It can also be seen that the 
singularity at the crack tip is better modeled by the 
nonlinear (quadratic) bases method.  
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Fig. 5 Stresses xσ  ahead of the crack tip for the 
edge crack problem 
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Fig. 6 Stresses yσ  ahead of the crack tip for the 

edge crack problem 
The displacement field around the crack tip is 

shown in Fig.7. The two solutions agree well with 
the exact solution. It can be seen that the quadratic 
bases provides a better solution than that linear 
bases. 
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Fig. 7 Y-displacements behind the crack tip for the edge 

crack problem 

6. Conclusions 
The meshless manifold method is presented in 

this paper. The proposed method is based on the 
mathematics of partition of unity and finite cover 
approximation theory for the discontinuous 
problems in the solving domain. It constitutes a new 
class of meshless method. 

When problems of crack are solved with the 
method, each node in the affected domain is 
separated into two or more nodes. All nodes that are 
not affected by the crack remain unchanged. As a 
result, arbitrary crack can be treated easily.  

The meshless manifold method is given a kind 
of the mathematical method to treat discontinuity in 
solving domain. The method mainly used the finite 
covers approximation theory to model cracks that 
lead to interior discontinuity of displacement. 
Consequently, the method overcomes the 
shortcomings of the empirical methods that include 
three methods of the visibility criterion.  
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