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Abstract: - This paper presents a 1D Monte Carlo (MC) algorithm for the solution of the wave equation. 
Historically, the MC method has not been applied successfully to the solution of wave problems. This can 
primarily be attributed to the problem of resonance in the frequency-domain Green’s function for finite geometries 
at length scales greater than half a wavelength. In our previously published work, we have been successful in 
obtaining a frequency-domain solution at multiple-wavelength length scales through the use of infinite-domain 
Green’s functions. In this work, we extend the algorithm to problems in the time-domain. The MC method does not 
require any discretization, and hence the memory requirements are lower than approaches based on discretization. 
Another advantage of the MC method is that the computational procedure is inherently parallelizable and an almost 
linear increase in computational speed can be obtained with an increase in the number of processors. The 
application area of our interest is in the full-wave analysis of IC interconnect structures at multi-GHz frequencies. 
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1   Introduction 
The solution of the wave equation has widespread 
applications in science and engineering. Our particular 
area of interest is in the electromagnetic analysis of IC 
interconnect structures, where recent advances have 
resulted in multi-GHz operating frequencies. At such 
frequencies, circuit designers must account for a 
number of electromagnetic effects that are difficult to 
estimate. These effects include skin-effect loss, 
frequency-dependent inductance and capacitance, 
slow-wave substrate coupling, distributed 
transmission-line propagation and high-frequency 
radiation. With increasing frequencies, it is becoming 
evident that the electrical properties of IC 
interconnects must be estimated through a direct 
solution of Maxwell’s equations. However, traditional 
methods for the numerical solution of Maxwell’s 
equations require discretization both in space and time 
and the resulting computational difficulty becomes 
somewhat unmanageable in complicated 3D problem 
domains. As a result, we have been in the process of 
developing a MC [1-3] methodology for the solution 
of Maxwell’s equations. The MC method is based on 
probabilistic interpretations of deterministic 
equations. The method is completely meshless and 

hence the memory requirements for complicated 
problem geometries are significantly lower than for 
methods based on spatial discretization. Furthermore, 
the method is inherently parallelizable and an almost 
linear increase in speed can be obtained with an 
increase in the number of processors [4]. However, in 
spite of all these advantages, stochastic solution 
methodologies for hyperbolic PDEs are hard to 
formulate. This difficulty can primarily be attributed 
to the fact that there is a fundamental link between 
diffusion and Brownian motion [5], while hyperbolic 
problems model propagation without distortion. The 
mathematical foundations of a stochastic model of the 
wave equation have been laid out by Mark Kac and 
Sidney Goldstein [6]. However, there is an absence of 
effective MC algorithms for the wave equation. This 
is due to the problem of resonance in the frequency-
domain Green’s function [7-8] at multiples of half-a-
wavelength length scales, which will be described in 
the next section. 

Our previous work [9] has involved the 
development of a MC algorithm for Maxwell’s 
equation (in the frequency domain) through an 
iterative-perturbation based Green’s function in 
problem domains of arbitrary heterogeneity and thus 
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very suited for materially heterogeneous interconnect 
structures. Though this algorithm was able to capture 
quasi-static effects such as skin-effect, it was limited 
to length scales smaller than half a wavelength. In a 
later work [10-11], we were able to extend the 
frequency-domain solution to multiple-wavelength 
length scales through the use of an infinite-domain 
Green’s function. In this present work, we develop a 
MC algorithm for the 1D wave equation in the time-
domain. We will now present the details of the 
algorithm. 
 
 
2   Development of the Algorithm 
We consider the 1D wave equation 
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defined in domain ,0 Lx !! v  being the speed of 
propagation. The speed of propagation is assumed to 
be equal to unity ( smv /1= ) everywhere in this 
paper. We impose the following initial and boundary 
conditions, 
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where c and d are integers. With the method of 
eigenfunction expansion [7-8], the analytical solution 
Eq. (1) can be shown to be 
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We now consider a Green’s function [7-8] 
( ),,|,

00
txtxG  to Eq. (1) whose solution at ),( tx is 

given as the solution of the equation 
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given a dirac-delta function source at ( )
00
, tx  subject 

to the following homogeneous boundary conditions 
and causal initial conditions: 
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Again, using the method of eigenfunction 

expansion [7-8], the Green’s function can be shown to 
be 
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where ( )

0
ttH !  is the unit-step [7-8] function. Using 

Green’s integral theorem, the solution at any point x 
inside the problem domain ],0[ L  at time t is given by  
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We now introduce a new variable ),,( txS  such 

that .),(),(
L

x
txUtxS !=  Hence, Eq. (7) transforms 

to 
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Hence, the MC solution of the boundary-value 
problem given in Eq. (1) reduces to the statistical 
estimation [12] of the two line integrals in Eq. (8), 
which is achieved by sampling the integrand with the 
help of a random-number generator, according to a 
pre-determined probability distribution function. The 
two line integrals in Eq. (8) readily generalize to 
surface and volume integrals for problems in two and 
three dimensions [7-8]. An estimate of the solution, 

),( txU  is obtained by averaging over a statistically 
large number (N) of samples of the variable ),( txS , 
and is given by 
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where 

n
S  is the nth sample, and S  and U  are 

statistical estimates of ),( txS  and ).,( txU  Thus the 
solution ),( txU  at a given position and time can be 
estimated irrespective of the solution at any other 
position or time. 

There are two kinds of error in this algorithm. The 
first source of error stems from the truncation of the 
Green’s function in Eq. (6) and its temporal derivative 
as used in Eq. (8). The second source of error in the 
result is statistical in nature. A measure 

T
! of the 

statistical error is given by [13] 
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where 

E
!  is the standard deviation of the estimates 

from different integration samples of the variable 
),,( txS  and N is the number of samples. As a result, 

the statistical error can be controlled by controlling 
the number of samples. 

We note that the form of the Green’s function in 
Eq. (6) does not impose any restriction on the length 
of the problem domain L. On the other hand, the 
Green’s function equation to Eq. (1) in the frequency 
domain is given by 
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where !  is the frequency, with boundary conditions 
( ) 0|0

0
=xG  and ( ) .0|

0
=xLG  The solution to Eq. 

(11) is given by [7-8] 
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It can be seen that for ,!" nL =  (n being an 

integer), ,0)sin( =L!  and it is not possible to 
achieve a statistical solution beyond half a wavelength 
length scales. As a consequence of this resonance in 
the frequency-domain, the MC method has not been 
widely applied to the solution of the wave equation. In 
a previous work [10-11], we were able to achieve a 
stochastic solution at multiple wavelengths through 
the use of an infinite-domain Green’s function of the 
form: 
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In this work, we have developed a MC algorithm for 
problems in the time-domain. The results are given in 
the next section.  
 
 
3   Results 
We have applied the MC algorithm to two benchmark 
problems: 
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and 
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As mentioned in the previous section, the speed of 
propagation is assumed to be equal to sm /1  and the 
problems are simulated for !4=L  meters and 1=t  
second. The algorithm was coded in C on a 2 GHz 
Apple MacBook and 6

10  random-walks were 
generated for each solution point. The Green’s 
function in Eq. (6) and its temporal derivative in Eq. 
(8) were truncated to 250 terms. It can be observed 
from Fig. 1 and Fig. 2, that there is excellent 
agreement between analytical and MC solutions. 
Table 1 shows the exact and statistical error (given by 
Eq. 10), and they are seen to be in conformity. 
 

 
Fig. 1: Solution of the wave equation in Eq. (1) with 

!4=L  meters and 1=t  second for the initial and 
boundary conditions shown above. The speed of 
propagation is assumed to be unity (i.e. sm /1 ). 
 

 
Fig. 2: Solution of the wave equation in Eq. (1) with 

!4=L  meters and 1=t  second for the initial and 
boundary conditions shown above. The speed of 
propagation is assumed to be unity (i.e. sm /1 ). 
 

Problem 
Specification Exact Error Statistical Error 

Problem A 0.004 0.006 
Problem B 0.002 0.002 

Table 1: Exact and statistical errors for the benchmark 
problems. The errors are normalized to the maximum value 
of the solution in each case.  
 
 
4   Conclusion and Future Work  
Summarizing, we have developed a 1D MC algorithm 
for the wave equation and excellent agreement has 
been obtained between our numerical results and 
exact analytical solutions. We plan to extend the 
algorithm to problems in materially heterogeneous 
problem domains, to problems in two and three 
dimensions, as well as to Neumann and mixed 
boundary condition problems. We also plan to 
collaborate with researchers at Air Force Research 
Laboratory (Wright-Patterson Air Force Base) 
towards achieving the parallelization and optimization 
of this algorithm. 
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