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Abstract: - The surface impedance of high-Tc superconducting microstrip lines and its temperature 
dependence is studied using the full-wave Finite Difference Time Domain (FDTD) technique. Maxwell’s 
equations are modified to incorporate the two-fluid London model that describes superconductivity. The 
supercurrent density and the average current along the microstrip line are calculated as function of temperature 
and the width of the microstrip line. In addition, the surface resistance and reactance as function of 
temperature have been calculated and compared to published results. 
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1 Introduction 
High Tc superconducting (HTS) microstrip 
transmission lines are extensively used in 
microwave devices and applications [1]. This is due 
to the fact that the surface resistance of 
superconducting materials is at least one order of 
magnitude smaller than that of conventional 
conductors at an operating temperature of 77K.  
The BCS, the London, and the Ginzburg–Landau 
(GL) theories [1, 2] are among the well known basic 
theories that describe conventional 
superconductivity. However, phenomenological 
models are needed to describe the properties of 
HTS. In particular, the two-fluid model states that 
the current in the HTS is composed of normal and 
superconducting components. The superconducting 
current is governed by the London equations [2], 
which is incorporated into Maxwell’s equations.  
These equations have been solved using several 
different numerical techniques. The most notable in 
this respect is the finite difference time domain 
(FDTD) method [3-5]. In reference [4], a full-wave 
FDTD is used to study nonlinearity in HTS planar 
structures, where Ginzburg-Landau equations are 
solved numerically. Even though this may be needed 
to investigate nonlinearity in HTS microstrips, it 
remains that it involves a larger number of equations 
to be solved simultaneously and heavy 
computations. 
Maxwell’s equations, in conjunction with the 
London equation, are numerically solved using a 
FDTD code for a 3-D microstrip line to calculate the 

current density distribution and the surface 
impedance as function of temperature and the width 
of the microstrip line. In this way our simulations 
are carried out using a PC rather than workstation or 
supercomputer machines. 
 
2 Theory and Problem Formulation 
According to the two-fluid model the total current 
density consists of two components; the 
superconducting current density sJ

r

 and the normal electron density nJ
r
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where, )(Tnσ is the normal conductivity of the 
superconductor as function of temperature [6], 

are the charge density and velocity 
for the normal and superconducting currents, 
respectively. The simplest form of  which 
are related to the total electron density ( ) and 
temperature (T), are given by the following relations 
[7]: 
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where  is the critical temperature and cT γ (with 
values ) is an exponent.  is related to 

London penetration depth  

1.23.1 − )(Tns

)(TLλ as follows [6]: 
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The temperature dependence of )(TLλ  is given by:  
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where, )0(λ  is the penetration depth for KT 0= .  
 
For HTS, Maxwell's equations are modified as 
follows: 
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On the other hand, sJ
v  is related to the electric field 

via the equation: 
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Equations (7) and (8) are discretized and solved 
simultaneously using the FDTD method. To resolve 
the problem of a very thin superconductor thickness 
without using excessive computer memory and 
space, a variable mesh with second order accuracy 
is applied. The geometry of the microstrip line 
under consideration is shown in Fig.1. The (YBCO) 
HTS microstrip line has a 50 Ω impedance with a 
strip width of 7.5 µm, and a thickness of 1 µm. 

Penetration depth and normal conductivity are 
equal to 0.2 µm and 1.0x106 S/m , respectively, at 
77 K. The substrate thickness is 10 µm and εr = 13. 
The dimension of the computational domain is 
(64x100x30). The time step size is chosen based on 
the smallest mesh step size following the Courant 
stability condition. For simplicity, the ground plane 
is chosen to be a perfect conductor. The 
computational domain is terminated by Mur 
absorbing boundary conditions [8]. 
 
 
3   Results and Discussion 
Temperature is a critical factor that affects the 
superconducting properties of the microwave 
devices. For this reason, the temperature dependence 
of the supercurrent density and the surface 
impedance of the microstrip line is investigated.    
 
 
3.1   Supercurrent Density 
The normalized supercurrent density 

distribution as function of width at different 
temperatures is shown in Fig.2. It is clear from the 
figure that for all temperatures, the supercurrent 
density along the microstrip is constant throughout 
the width except at the edges where a sharp increase 
occurs.  Also in this figure, the supercurrent density 
decreases as the temperature increases. To further 
investigate the temperature dependence, the 
supercurrent density is averaged over the width for 
each temperature, as shown in Fig.3.  In this figure, 
the average supercurrent density decreases slowly 
with temperature well below T

)( SYJ

c followed by a sharp 
decrease in the vicinity of Tc.  This is due to the fact 
that the charge density  decreases as temperature 
increases according to equation (3).    
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Fig.2 Normalized supercurrent density as function of HTS 
width at different temperatures. 

Conductor 

Excitation plane 
Ground plane X

Z
 

Y 

Fig.1 Microstrip geometry and computational domain. 
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Fig.3 Normalized average supercurrent density with 
temperature. 
 
 
3.2   Surface Impedance 
The calculated surface impedance is defined as 
the ratio of the tangential electric field and 
magnetic field at the surface of the microstrip 
line [9]:    

sZ

tE

tH

t

t
s H

EZ = ,      (10) 

where  andyt EE = xt HH = for the geometry 
given in Fig.1.  
 
The surface impedance of the HTS microstrip line is 
very sensitive to temperature variations near TC as 
can be seen from Fig.4. However, at temperatures 
much below , the surface impedance is much less 
sensitive.  The increase in temperature induces an 
increase in the normal carriers ( ) as given by 
equation (5). This in turn induces oscillations of 
theses carriers under the influence of the 
electromagnetic field. This oscillation or motion of 
the unpaired carriers will cause power dissipation 
which can be characterized by surface resistance. 

CT

nn

Fig.4 shows also a good agreement of our results 
with those reported in [7]. The slight discrepancy 
between our results and those reported in [7] can be 
attributed to the fact that we used the basic 
definition of the surface impedance as given by 
equation (10) without any approximations. 
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Fig.4 Temperature dependence of (a) real part ( ) 
and (b) imaginary part ( ) of the surface impedance 
for f = 10GHz. 
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4   Conclusion 
In this paper, a theoretical analysis of HTS at high 
frequencies was discussed, based on the two-fluid 
model and the London theory in conjunction with 
Maxwell's equations. The implementation of this 
model in a FDTD code for a 3-D HTS microstrip 
line has been presented. Then the temperature 
dependence of the supercurrent density and the 
surface impedance of the microstrip line was 
investigated numerically using this technique.  Our 
results show good agreement with those reported in 
the literature.     
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