Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006

Analysis of Software Vulnerability

CHUNGUANG KUANG, QING MIAO, HUA CHEN
Department of Software
Beijing Institute of System Engineering
P.O. Box 9702, Beijing
CHINA

Abstract: Software vulnerability is the fault that can be viciously used to harm security of software system. In

order to decrease the harm, vulnerability analysis can be used to find security problems of software system as

early as possible, and related measures, such as correctness, avoidance, may be planed. Vulnerability analysis is

divided into two types, one is static analysis of vulnerability, the other is dynamic analysis of vulnerability. In

this paper, we will introduce libFunction, which is a kind of dynamic analysis of vulnerability. LibFunction

runs on redhat linux. It analyzes vulnerabilities related to library function. The main functions of libFunction

are testing the behavior of application program when the return value of the called function is abnormal, and

assessing the behavior.

Key-Words: Vulnerability, Vulnerability Analysis, Library Function, Software, Security, Static Analysis,

Dynamic Analysis

1. Introduction

Software vulnerability is the fault that can be
viciously used to harm security of software system.
The faults are introduced when software system is
and wused. Although the
research of software project has provided many

designed, developed,

methods to insure the quality of software system,
there are still some faults in software system due to
the complexity of design, development, and
application environment. consequently, there are still
some vulnerabilities in software system.

In order to decrease the harm that vulnerability
does to security of software system, on one hand,
new technologies should be found to decrease faults
in software system, on the other hand, vulnerability
analysis can be used to find security problems of
software system as early as possible, and related
measures, such as correctness, avoidance, may be
planed to increase the security level of software
system.

Vulnerability analysis is divided into two types,

one is static analysis of vulnerability, the other is
dynamic analysis of vulnerability. Static analysis of
vulnerability refers to analysis of vulnerability that
applied to source code. The theory of static analysis
of vulnerability is simple, by researching, static
analysis techniques try to find the vulnerability
patterns of source code level, then check the source
code to know whether the source code contains
known vulnerability patterns or not. The principle is
simple, but the realization is complex. Further more,
one method can only deal with one problem of one
language, a lot of methods must be integrated to
develop a powerful tool. Another defect of static
analysis of vulnerability is that it can only be applied
to source code. It can do nothing if there is no related
source code. Dynamic analysis of vulnerability is
superior to static analysis of vulnerability in the way,
because dynamic analysis is not applied to source
code, but applied to object code that is running.
There are many kinds of dynamic analysis of
vulnerability. In this paper, we will introduce
libFunction, which is a kind of dynamic analysis of

218

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006

vulnerability. LibFunction runs on redhat linux. It
analyzes vulnerabilities related to library function.
The main functions of libFunction are testing the
behavior of application program when the return
value of the called function is abnormal, and
assessing the behavior. In order to be practical, the
original library function must be modified to return
abnormal value with possibility of 1 when test is on
and to execute normally when test is off,
consequently, libFunction has the functions of
searching library function, modifying library
function, and compiling library function.

2. Detailed Design of libFunction

2.1 Introduction
We usually call library functions when we
develop application programs. There are two
kinds of return value for library functions, one
is normal, and the other is abnormal. The
return value is normal when the called library
function is executed successfully, and the
return value is abnormal when the called
library function is executed unsuccessfully.
Take the function (void *malloc(size t size))
as an example, if a piece of required memory
with length of size is allocated, the begin
address of the piece of memory is returned. If
a piece of required memory with length of size
has not been allocated because of insufficient
memory or other reasons, NULL (0) is
returned. There may be several kinds of
abnormal return values that represent different
abnormal cases. All possible return values of
the called library function should be
considered when an application program calls
a library function, which is not the reality. The
reality is as follows, only the normal case is
considered when an application program calls
a library function, or all the abnormal cases
are not considered when an application
program calls a library function. The faults
that are introduced when the software system

is developed are harm. For example, if only
the normal case is considered when the
function (void *malloc(size t size)) is called,
i.e. a piece of required memory with length of
size is allocated successfully, the begin
address of the piece of memory is returned,
and use the piece of memory afterwards. It is
fine when the reality is good, but how about
the bad reality that the return value is NULL.
It is obviously dangerous that an application
program uses the memory with address of 0.
At the same time, the faults that are introduced
when the software system is developed can’t
be avoided. We should find the sort of faults
by analysis of vulnerability. The sort of faults
is exposed with low possibility when the
computer system is running normally, because
the library function returns abnormal value
with low possibility. In order to be practical,
the original library function must be modified
to return abnormal value with possibility of 1
when test is on and to execute normally when
test is off. LibFunction does as follows, It gets
the source code that implements the function
of library functions, find the accurate position
that implements the function of the tested
library function, modify the part of the source
code, compile the source code and generate a
dynamically linked library glibc, replace the
old dynamically linked library glibc with the
new dynamically linked library glibc. A
dynamically generated reference file will be
generated according to the test requirements
when an application program is tested. If the
tested application program calls a tested
library function, the new dynamically linked
library glibc will decide whether to return
abnormal value or to execute normally
according to the reference file. Further more,
the new dynamically linked library glibc will
decide which abnormal value will be returned
when an abnormal value should be returned.
LibFunction will assess the behavior of the
tested application program after the test is over.

219

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006

figure 1 is the structure graph of libFunction.

Search the library
function

>

Modify the library
function

<

Compile

The new dynamically
linked library

Test requirement I:> Test

Assess

Fig.1

LibFunction has two interfaces with the outside
world. They are

1. User interface: used to collect requirement
information of user, such as the definition form of
library function, search path, search pattern, the
accurate position that the library function will be
modified, the tested application program, the tested
library function, the type of abnormal return value of
the tested library function, the position where an
abnormal value will be returned, position pattern, the
IP address of the computer where the tested
application program locates at, and so on.

2. Output interface: used to output assess report

LibFunction has four inside interfaces, they are
1. The
searching library function and the module of

interface between the module of

modifying library function: the output of the module
of searching library function, i.e. the file that the

searched library function is implemented and the
position where the searched library function locates
at in the file, is the input of the module of modifying
library function.

2. The
modifying library function and the module of

interface between the module of

compiling library function: the output of the module
of modifying library function, i.e. the file that has
been modified, is the input of the module of
compiling library function.

3. The
compiling library function and the module of testing

interface between the module of

application program: the output of the module of
compiling library function, i.e. The new dynamically
linked library glibc, is the input of the module of
testing application program.

4. The interface between the module of testing
application program and the module of assessing: the
output of the module of testing application program,
i.e. the result of the test, is the input of the module of
assessing,

The detailed information of all the modules is given
as follows.

2.2 The module of searching library function
The main function of the module is searching the
file that the

implemented in and the position where the

searched library function is
searched library function locates at in the file. Its
control flow and data flow are as follows:

1. Generate the graph interface of user. The
definition form of the searched library function can
be formed manually or selected from a list. The
searched path has been initialized, but the user can
modify it. The search pattern must be selected from a
list.

2. Collect the user information.

3. Judge whether the user information conforms
to the standard or not after user confirms to search. If
the user information does not conform to the
standard, some related messages are displayed,
otherwise, execute the following steps.

4. Decompose the definition form of the

220

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006

searched library function, for example, “void

*malloc(size_t size)” will be decomposed into “void”,
“* “malloc”, “(*, “size t”, “size”, and “)”.

5. Extract the name of the searched library
function.

6. Generate the required regular expression for
the first search, search the possible files that
implement the function of the searched library
function according to the regular expression, the
search is limited to the searched path.

7. Generate the required regular expression for
the second search, search the possible position that
implements the function of the searched library
function according to the regular expression, the
search is limited to the files found in the previous
step. If some possible positions are found, the related
file name and the accurate position are displayed.

2.3 The module of modifying library function
The main function of the module is modifying
the file that the searched library function is
implemented according to the related reference
file. Its control flow and data flow are as follows:

1. Accept the search result of the module of
searching library function, and display it in the graph
interface of user.

2. It is possible that there exist several results.
user can select the exact file and the exact position
after exampling more detailed information.

3. The exact file and the exact position are
accepted. If the file has not been modified, a backup
of the file is generated, and some required codes for
modifying are added in the front of the file. If the file
has been modified, no backup of the file is generated,
and no code is added in the front of the file.

4. Modify the file in the exact position
according to the reference file named return_type.h,
All the abnormal return values of library function are
contained in return_type.h.

2.4 The module of compiling library function
The main function of the module is compiling
the modified files. A new dynamically linked
library glibc is generated. Its control flow and

data flow are as follows:

1. Get the required path for compiling.

2. Compile the modified files. If there exist
some compiling errors, related messages are
displayed in the graph interface of user, otherwise,
noticed that

the wuser is compiling finished

successfully.

2.5The module of
program
The module is consisted of two parts, one is

testing application

named server part, the other is named client part.
The main function of the module is testing the
behavior of application program when the return
value of the called function is abnormal. Its
control flow and data flow are as follows:

1. Generate the graph interface of user of the server

part.

3. Start the server part.

4. The server part is querying for a request from the
client part after a ServerSocket is initialized by
the server part.

5. Generate the graph interface of user of the client
part.

6. Some parameters can be selected from lists, such
as the tested application program, the tested
library function, the type of abnormal return
value of the tested library function, the position
where an abnormal value will be returned (the
tested application program may call the tested
library function many times in one execution, the
position where an abnormal value will be
returned refers to the number of one call or
numbers of several calls), position pattern

(position pattern is divided into two types, one is

single, the other is consecutive. The single one

means that only one call gets abnormal return
value in one execution of the tested application
program, and the other calls are executed
normally. The consecutive one means that
several consecutive calls get abnormal return
value in one execution of the tested application
program, and the other calls are executed
normally), and so on, the position where an

221

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006

10.

11.

12.

13.

14.

abnormal value will be returned can be formed
manually, the IP address of the computer where
the tested application program locates at has
been initialized, but the user can modify it.

Collect the user information of the client part.
Initialize a Socket in the client part.

The client part sends the name of the tested
application program to the server part.

The server part decides weather need to do some
preparation work or not when the name of the
tested application program has been detected. Do
some preparation work if needed. For example, if
the tested application program is wu-ftpd, the
server part will check weather the server process
of wu-ftpd is on or is not, the server process of
wu-ftpd will be started if it is off. The server part
will notice the client part that the server part is
ready when the server part is ready.

The client part send the name of the tested
library function, the type of abnormal return
value of the tested library function, the position
where an abnormal value will be returned and
position pattern to the server part after the client
part has been noticed that the server part is ready.
After knowing the name of the tested library
function, the type of abnormal return value of the
tested library function, the position where an
abnormal value will be returned and position
pattern that sent by the client part, the server part
generates a reference file named config.h and
clears a file named call times.txt. Call_times.txt
is used to record data related to the tested library
function that called by one execution of the
tested application program. Config.h contains the
tested library function, the type of abnormal
return value of the tested library function and the
position where an abnormal value will be
returned.

The tested application program is started as
soon as the client part knows that the server part
has generated config.h and call times.txt has
been cleared.

The client part tries to know the behavior of the
tested application program, and produce the test

result.
15. If another test is needed, repeat the steps from
(5) to (13).

2.6 The module of assessing
The main function of the module is assessing the
performance of the tested application program
according to the result produced by the module
of testing of application program. Its control
flow and data flow are as follows:
1. Get the result produced by the module of
testing of application program.
2. Assess the performance of the tested
application program according to the result produced
by the module of testing of application program.

3. Test result

Authors have tested several application programs
using libFunction. Take wu-ftpd 2.6.1 as an
example, part of the test result is shown below:

1. May 26 06:58:41 kcgnew ftpd[2033]:
exiting on signal 11: Segmentation fault:::ftp
CALLOC NULL 27

2. May 26 06:59:03 kcgnew ftpd[2143]:
exiting on signal 11: Segmentation fault:::ftp
CALLOC NULL 38

3. May 26 07:03:09 kcgnew ftpd[3328]:
exiting on signal 11: Segmentation fault:::ftp
MALLOC NULL 78

4. May 26 07:03:19 kcgnew ftpd[3378]:
exiting on signal 11: Segmentation fault:::ftp
MALLOC NULL 83

5. May 26 07:13:01 kcgnew ftpd[6105]:
exiting on signal 11: Segmentation fault:::ftp
SETEUID -1 1

6. May 26 07:13:03 kcgnew ftpd[6115]:
exiting on signal 11: Segmentation fault:::ftp
SETEUID -1 2

7. May 26 07:24:49 kcgnew ftpd[8422]:
exiting on signal 11: Segmentation fault:::fip
GETMNTENT NULL 1

Kcgnew is the name of the computer where the

222

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006

tested application program locates. 2033 is the
process number. The tested application program may
call the tested library function many times in one
execution, 27 refers to the number of one call. It is
shown that there are some faults related to library
function in wu-ftpd 2.6.1. Correctness is needed.

4. Conclusion

There are some faults in software system due to
the complexity of design, development, and
application environment. Consequently, there are
some vulnerabilities in software system.
Vulnerability analysis can be used to find security
problems of software system as early as possible, and
related measures, such as correctness, avoidance,
may be planed to increase the security level of
software system. The method of vulnerability

analysis is a kind of effective method to increase the

security of software system. the search of
vulnerability is useful. LibFunction described in this
paper is only an attempt of the authors in research
about vulnerability, hope to make a deeper research

afterwards, and develop some more practical tools.

References

[1] Giovanni Vigna, University of California Santa
Barbara, Testing and analysis,

[2] Ivan Krsul, Mahesh Tripunitara , FEugene
Spafford, COAST Laboratory Purdue University
West Lafayette, IN 47907-1398,
Vulnerability Analysis

Computer

[3] James Newsome, Carnegie Mellon University,
Dawn Song, Carnegie Mellon University, Dynamic
Taint Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on Commodity
Software

223

