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Abstract: - The present paper considers total fatigue life of structural components. Mathematical 
models used to simulate the initiation and propagation processes are quite different. In this work 
the initiation phase is modeled by using strain-life and cyclic stress-strain curves while the 
propagation phase uses crack growth rate versus strain energy density theory. Fatigue crack 
growth rate depends not only on the load amplitude, but also on the morphology of crack path. 
Based on strain energy density theory, a fatigue crack growth model is developed to predict the 
lifetime of fatigue crack growth for cracked structural components. The validity of the model is 
established with two cases: a center-crack plate and plate with a hole. 
 
Key Words: - Low-cycle fatigue, crack initiation, crack growth, strain energy density, finite 

elements 
 
1   Introduction 
 
In order to simulate the initiation and 
propagation processes different 
mathematical models are used [1].. The 
initiation phase is usually modeled using 
strain-life and cyclic stress-strain curves 
while the propagation phase uses crack 
growth rate versus stress intensity curves 
[2,3]. The strain-life method assumes 
similitude between the material in a smooth 
specimen tested under strain control and the 
material at the notch. For a given load 
sequence, the fatigue damage in the 
specimen and the notch root are considered 
to be similar and so their lives will also be 
similar. The local stress-strain history must 
be determined, either by analytical or 
experimental methods. For the stress 
analysis finite element modeling is usually 
required. The present study is aimed at 
developing a fatigue crack propagation 
model based on the specific energy 
incorporating the cyclic deformation 
properties obtained from a low cycle fatigue 
test. This concept has been used because the 
highly strained zone ahead of the crack is 
very much like a small low cycle fatigue 
specimen. Also it is more advantageous to 
form a model mainly based on a low cycle 
fatigue properties since they are easier to 

obtain experimentally. The highly strained 
zone (process zone) very near to the crack is 
taken for the energy balance instead of 
taking the whole plastic zone with the 
premise that mainly it is the zone, where 
damage accumulates [3]. The FEM can be 
used for stress analysis and stress intensity 
calculations. 
 
2 Computation Methods of Total 
Fatigue Life  
 
The total fatigue life can be divided in two 
phases: Crack initiation and Crack 
propagation. In the following chapters will 
be given procedures that are proposed for 
total life computation. 
 
2.1 Crack Initiation 
 
Cyclic fatigue can be expressed with use of 
stress (σa- Ni), strain (εa- Ni) and energy 
(Wa-Ni) notations. The Wohler curve is a 
classical fatigue description in the case of a 
high number of cycles. It can be written as a 
straight line in log-log scale: 

log Ni = A – m log σa,  (1) 
where constants A, m on that curve could be 
determined from ASTM standard. 
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Equation (1) can be also expressed as the 
experimental notation: 

      σa = σf
/ (2Ni)b,  (2)  

where b is the fatigue strength exponent (b = 
- 1/m), and 

      σf
/ = 10(A + log2)/m,  (3) 

where σf
/ is the fatigue strength coefficient. 

Fatigue description in the strain notation 
using the total strain amplitude can be 
divided into elastic and plastic parts 

apaea εεε += .   (4) 
Using equation (2) we can write the 
equation for the relationship between the 
elastic strain amplitude and a number of 
cycles up to crack initiation: 
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Similarly as in equation (5) we can write the 
relationship between the plastic strain 
amplitude and a number of cycles: 

( )cifap N2/εε = ,  (6) 
where εf

/ is the coefficient of the fatigue 
plastic strain, and c is the exponent of the 
fatigue plastic strain. Thus, the total strain 
amplitude relationship in terms of cycles to 
crack initiation Ni, is written as: 
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The strain – fatigue life relationship as 
expressed by equation (7) was modified by 
Morrow in order to incorporate the effects of 
mean stress for the plain fatigue condition 
[1]. Changing formula to crack initiation life 
(7) results in the following: 

     ( ) ( )cif
b

i
mf

a NN
E

22 /
/

ε
σσ

ε +
−

= , (8) 

where σm is mean stress. If we assume 
that the cyclic strain curve is of 
Ramberg–Osgood type, the plastic strain 
amplitude can be expressed as: 
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where k/ is the coefficient of the cyclic strain 
hardening, and n/ is the exponent of the 
cyclic strain hardening. Thus, we obtain the 

relationship between the total strain 
amplitude and the stress amplitude 
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One typical cyclic stress-strain curve is 
shown in Fig. 1. Point A is corresponding to 
twice of the cyclic yield stress and strain 
(σy

/, εy
/) and point B is the point 

corresponding to stress and strain ranges 
with 2Ni=1, i.e. Δσ = 2σf

/ and  Δε = ((2σf
//E) 

+ 2εf
/). 

Needed energy absorbed till fracture Wc can 
be defined if we know the cyclic stress strain 

Fig. 1. Cyclic stress – strain curve. 
curve (fig.1), as the area below the curve. 
Wc is the area OABCO which can be 
defined when we subtract from the area 
OQBPO the sum of two areas, area OABQO 
andareaCBPC:
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after integrating: 
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Last term can be neglected since it is too 
small when compared to other two, and so: 
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and relation for energy absorbed till fracture 
Wc became: 
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2.2  Crack Propagation 
 
The cyclic stress and plastic strain 
components of Hutchinson, Rise and 
Rosengren crack tip singularity fields [4], 
ahead of crack tip is given by equations (14) 
and (15)[4] in the case of a small scale 
yielding conditions : 
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where ΔKI, Δσy
/, are the range of stress 

intensity factors under mode I loading and 
cyclic yield stress (Δσy

/ ≈ 2σy
/), respectively.  

For the central-crack plate ΔKI can be 
expressed as: 

aKI πσβ Δ=Δ , 
where a is crack length, Δσ - stress range 

and 
w
atg

a
w π
π

β = .Terms r and θ are 

the radial and angular positions, 
respectively, of any point from the crack tip, 
as shown in Fig. 2. Further the ( )/;nij θσ  

and ( /;nij θε ) are non-dimensional angular 
distribution functions. Term α/  is given by: 
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and  is the non-dimensional parameter of 
exponent n

/nI
/.  

Fig. 2. Zones in front of a crack tip. 
 

From equations (14) and (15) multiplication 
of equivalent stress and strain along the 
crack line (θ = 0) is given by: 

( ) ( )
rIE

nnK

n

eqeqI
eqeq

/

//2 ;0;0 εσ
εσ

Δ
=ΔΔ .(17) 

Since we defined the relation for multiplied 
equivalent stresses it is possible to define the 
cyclic plastic strain energy density in the 
units of Joule per cycle per unit volume 
[4,5], like: 
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Last equation presents distribution of plastic 
strain energy density per cycle ahead of the 
crack tip. In Eq. (19) unknown values are 
the angular distribution functions of 
equivalent stress and strain and parameter 
In

/. The region near the crack tip is widely 
recognized as divided in two important 
zones. The area near the crack tip is known 
as the process zone [6] and in that region 
damage mainly accumulates. Another region 
is the area between cyclic plastic zone and 
process zone (Fig.2). 
As a very important parameter of the first 
region is the length of the process zone 
ahead of crack tip d* (Fig.2), which can be 
analyzed as a constant by same authors [7] 
and as function of ΔKI by the others [6,8]. 
As a function of ΔK [8], d* can be expressed 
by: 

   /

22
*

y

thI

E
KKd

σπ
Δ−Δ

=             (20) 

where ΔKth is range of threshold stress 
intensity factor. Since we defined the length 
d* it is possible to determine the plastic 
energy ωp dissipated per cycle per unit 
growth. Needed relation  for ωp can be 
obtained by integrating the relation for the 
plastic strain energy density (19) and if r is 
substituted by d*, or: 
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after integrating, 
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where ( ) ( )( )// ;0;0 nn ijij εσψ = . As 
external load is increased from zero at the 
crack tip, it is blunted first and start to open 
when the stress intensity factor reaches the 
threshold value Kth. Further loading makes 
the crack tip more blunt and when load 
reaches the maximum value, the crack 
moves by some distance. Fatigue crack 
growth takes place when crack is open, so 
the driving parameter of crack is Kmax – Kth 
instead of Kmax – Kmin  (because, ΔKI = Kmax 
– Kmin): 
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Crack would grow by a length δa in a cycle 
when energy absorbed in the same cycle Wc 
equals plastic energy dissipated in the 
process zone, i.e. energy absorbed per unite 
growth of crack equal to the plastic energy 
dissipated within the process zone per cycle. 
Previously stated can be presented by the 
following formula: 

          Wc δa = ωp.             (24)  
The expression for δa is: 
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The above crack relation is a particular 
case for R = 0 where R = Kmin/Kmax. For 
R = 0, Kmax = ΔK, Kth = ΔKth, where is 
ΔKth a material constant and it is 
sensitive to stress ratio R. An important 
aspect in the fatigue design of structural 
elements is the ″design of safe cracks″ on 
the basis of the crack growth threshold. Of 
much concern, however, is the effect of 
stress ratio on the fatigue threshold stress 
intensity range, ΔKth. Regarding the R-effect 
on  ΔKth, many relations, mostly empirical, 
have been proposed, some of which are [9]: 

ΔKth = Kmax (1 - R); ΔKth = ΔKth0 (1 - R)1/2; 
ΔKth = ΔKth0 (1 - R)γ; ΔKth = ΔKth0 (1 – R2) 
and ΔKth = ΔKth0 [(1 - R)/(1 + R)]1/2,       (27) 
where ΔKth0 is the threshold stress intensity 
range at R = 0 and γ is a material constant 
which varies from zero to unity. For most of 
materials constant γ can be 0.71 [8]. Despite 
the large number of proposed relations (27) 
between ΔKth and R, a general relation does 
not seem to exist. Such a general relation 
would be most welcome. 
Substituting the value of Kmax and Kth for a 
general stress ratio R, the fatigue crack 
growth relations are expressed as 
given:
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It is clear from equations (28) and (29) that 
with an increase in stress ratio R, ΔKth 
decreases and ΔK increases, increasing the 
fatigue crack growth rate but the influence is 
stronger in stage I (near threshold region of 
da/dNp vs ΔKI plot) where ΔKI and ΔKth are 
comparable than in other regions of the plot. 
From fatigue crack growth relations (26) and 
(27) or (28) and (29) can be seen that they 
require only mechanical and fatigue 
properties E, σf

/, εf
/ and n/, which presents 

great advantage by application of this 
procedure. 
 
3   Numerical Results 
 
To illustrate proposed computation 
procedures in fatigue lives estimations two 
numerical examples are  included: (1) plate 
with hole under constant amplitude cyclic 
loads and (2) a center-crack plate under 
cyclic loads. 
 
Example 1: Initial fatigue life calculation 
In this example, crack initiation fatigue life 
estimation of the plate with central hole was 
carried out. For stress analysis FEM  was 
used [10]. The structural element was 
subjected to constant amplitude axially 
loading. Material characteristics of medium 
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strength steel under cyclic loading are: b = - 
0.081; c = - 0.67; σf

/ = 1165.6 MPa; εf
/ = 

1.142; n/ = 0.123; k/ = 1062.1 MPa; Sy = 
648.3 MPa; Su = 786.2 MPa; E =  2.069 105 
MPa;              Geometry characteristics 
are: w = 25.4 mm; 2R = 12.8  mm; t 
= 7.68 mm; L = 100 mm. 

60.21

56.67

53.13

49.6

46.06

42.52

38.98

35.45

31.91

28.37

24.83

21.3

17.76

14.22

10.68

7.146

3.609
res  

Fig. 3. Stress distribution for the plate with 
central hole. 

Here, we use Morrow criteria (Eq. 8) to 
determine number of cycles up to crack 
initiation. Obtained results were compared 
with available experimental results [11]. 

Fig. 4. Fatigue life up to crack initiation of the 
plate with central hole using FEM (Medium 

strength steel, R = -1, experiment  [11]). 
A comparison of experimental data [11] 
with the predictions shows excellent 
agreement. 
 
Example2a:Crack growth rate calculation 
A fatigue crack growth rate was 
determined from analytical method using 
equations (26) and (27) in order to 
compare with experimental results. A 
central-crack plate is made of 8630 
Steel. Material characteristics of  8630 

Steel under cyclic loading are: σf
/ = 1936 

MPa; εf
/ = 0.42; n/ = 0.195; k/ = 2267 

MPa; Sy
/ = 334 MPa;  E =  207 103 MPa; 

ΔKth0 = 13; In
/ = 3.082; ψ = 0.94794.            

Geometry characteristics are: w = 500 
mm; 2a = 24  mm; L = 100 mm. 
Based on known characteristics of material 
and geometry, calculated values of (da/dNp) 
and ΔKI are presented in Fig.5 (for different 
relations for ΔKth). 

8630 Steel; R = 0.5
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c d
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Fig. 5. Comparison of the predicted crack 
growth rate with experimental data [12]. 

 
In Fig.5 all curves have different ΔKth, so:  
a) ΔKth= ΔKth0 (1 - R)1/2, b) ΔKth= ΔKth0 (1 - 
R)γ, c) ΔKth= ΔKth0 (1 – R2) and  d) ΔKth= 
ΔKth0 ((1 - R)/(1 + R))1/2. 
Predictions from Eq. (29) show the best 
agreement with experimental data (Fig. 5). 
 
Example2b:Crack growth life calculation 
In this example fatigue crack growth 
prediction was considered. Structural 
element is a central-crack plate. External 
loading is axial with constant amplitude. 
Material characteristics of  2219 T851 Al 
alloy under cyclic loading are: σf

/ = 613 
MPa; εf

/ = 0.35; n/ = 0.121; k/ = 710 MPa; 
Sy

/ = 334 MPa;  E =  71 103 MPa; ΔKth0 = 
30; In

/ = 3.067; ψ = 0.95152, Kc = 60 MPa 
√m. Geometry characteristics are: 
w = 500 mm; 2a = 24  mm; L = 100 mm. 
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Fig. 6. Crack length versus number of cycles 
(σ max = 222.22 MPa, σmin = 22.22 MPa). 

Figure 6 shows the relationships (integrating 
eq.29) between crack length a and number 
of cycles for crack propagation Np. 
 
4   Conclusion 
 
This research presents efficient 
computation procedure for total fatigue 
life of structural components. The 
mathematical models used to simulate 
the initiation and propagation processes 
are quite different. This procedure uses 
minimal number of material properties. 
In this work the initiation phase is 
modeled using strain-life and cyclic 
stress-strain curves and FEM, while the 
propagation phase uses crack growth 
rate versus strain energy density theory. 
Based on strain energy density theory, a 
fatigue crack growth model is developed 
to predict the lifetime of fatigue crack 
growth for cracked structural 
components. Computation results are 
compared with experiments. Good 
correlation between numerical and 
experimental results is obtained. 
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