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Abstract: This paper presents a sleep stage scoring method based on a Hidden Markov Model (HMM) with the 
goal of obtaining differences between good and bad sleepers according to the Self Rating Questionnaire for 
Sleep and Awakening Quality (SSA).  For the design of the model, we study several parameterization 
techniques, the model topology and the training strategy for optimum performance. The system uses only one 
electroencephalographic channel (EEG), which represents an improvement over manual and automatic 
classifiers that use several channels. We adopt in our study the sleep stages W, S1/REM, S2 and S3/S4 
according to the R&K standard. The experiments show that our system performs well compared with the inter 
scorer agreement. The experiments are performed over 24 recordings from SIESTA database. 
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1   Introduction 
One of the main problems which is presented in 
Sleep studies is the automatic human sleep stage 
classification. This representation is called 
hypnogram and the manual classification scored by 
an expert, is a hard task. 
     Rechtschaffen & Kales (R&K) [1] is the set of 
rules which defines the sleep process divided in six 
stages or epochs: W (wake), S1 (light sleep), S2, S3 
and S4 (deep sleep) and REM activity (Rapid Eye 
Movement). 
     Construction of an automatic sleep stage scoring 
is a difficult task, because the R&K rules are 
subjective resulting in low inter scorer agreement. 
For example two independent manual hypnogams 
scored by two expert scorers have an agreement rate 
between 51% and 87% [2]. The reason of this result 
is that the rules are not useful in older people or in 
cases where sleep disorders exist. Moreover R&K 
has a poor time resolution (30 seconds). Despite of 
these drawbacks, R&K continues to be the gold 
standard in sleep clinics. 
     Many automatic sleep scoring devices use the 
electroencephalogram (EEG), electromyogram 
(EMG) and electrooculogram (EOG), as minimum 
system for the automatic sleep scoring, although the 
inclusion of other polysomnographic signals, can 
improve the classification rate. We have three goals 
in this work: 
Firstly, to find a feature extraction technique with 
high discrimination capacity, taking only EEG 
recordings. Secondly, to develop the base of a 
classification system with HMM that could be useful 

in an automatic sleep scoring device. Thirdly, to 
discriminate between two groups of people that can 
be differentiated by the sleep quality. For this 
purpose, we obtain parameters from our automatic 
classification system according to R&K and try to 
observe differences between groups. 
     The performance of the proposed model is 
compared with R&K manual scoring (we only have 
epochs labelled according to this standard). Related 
to some restrictions of R&K, our system could take 
into account a better time resolution (3 seconds) and 
results shown as probabilities instead of fix epochs 
could be studied. 

2   Database 
The database consists of 24 recordings of subjects 
with ages between 20 and 69 years. Recordings 
belong to SIESTA database [3] with 16 EEG signals 
(C3-M2) with a sampling frequency of 100 Hz. 
According to a SSA criteria (Self-Rating 
questionnaire for Sleep and Awakening Quality), we 
have separated our database with 16 recordings with 
good sleep quality and 8 recordings with poor sleep 
quality. Eight recordings with good sleep quality 
were elected to train the model (group TR). On the 
other hand 8 recordings with good sleep quality 
(group TG) and others 8 recordings with poor 
quality (group TP) were chosen as test recordings to 
validate the model. 
     Database contains 130 manual hypnograms that 
will be used to propose hypothesis about possible 
transition among stages. 
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3   Feature Extraction 
In the feature extraction process, it is necessary to 
segment the EEG signal. This segmentation takes 
into consideration the stationary criteria of the 
signal. Traditionally 1-30 seconds length EEG 
segments have been used. In our case we have 
proposed 3 seconds length, since it presents a good 
compromise between stationary and time resolution. 
     We apply different parameterization methods. 
The features that were considered are: 
Filter Banks log-energies (Fbank). It exists a very 
clear correspondence between sleep stages and 
spectral power. This situation allows us to suggest 
an analysis with Fbank that covers the whole 
frequency band. 
     A FFT-based bank of equally spaced filters is 
applied to obtain the power at each band. To avoid 
dependencies with signal dynamics, we normalise 
each filter output with the total signal power. A 
logarithm operation is applied to the power values in 
order to reduce the dynamic range and therefore 
keeping the whole frequency information. 
Linear Frequency Cepstral Coefficients (LFCC). 
Discrete Cosine Transform (DCT) has the property 
of decorrelating power values and reducing the 
dimensionality of the feature vectors while 
preserving the relevant information. This fact is 
determinant in achieving good classification scores 
with HMM classifiers. Thus, a matrix transformation 
is applied to the Fbank vectors where matrix 
coefficients are obtained with the DCT. 
Autoregressive Coefficients (AR).  This is a 
classical method of spectral estimation and 
modeling. It has been very useful in EEG spectral 
estimation so it will be used also in our feature 
extraction process. 

4   HMM Sleep Modelling 
A Hidden Markov Model (HMM) has been proposed as a 
classification method which allows to model time 
sequences. 
 
 
 
 
 
 
 
 
 
 
 
 
The model represents the state features and their 
dynamic evolutions in the sleep period. This model 

has two main components. 
     Firstly, the transition probability matrix with 
defines the probabilistic nature of the dynamic state 
transitions (fig. 1). Secondly a mixture of probability 
density functions (pdf) that characterise the 
probabilistic nature of the features in each state. 
     We propose an association between states and 
sleep stages. This strategy makes easier our work 
from two points of view. For one thing, we give 
sense to the concept of “state” and on the other hand, 
it makes easier the training process, since we have a 
manual classification scored by experts. 
To design a HMM, we must estimate the parameters 
(A,B,π) which optimize the probability of the 
training observation vectors set.   

( )πλ ,, BA=           (1)                                      
where A, B and π are, respectively, the state 
transition probability matrix, the mixtures of 
probability density functions in each state and the 
probabilities to be in a initial state in the initial time. 
     For A matrix we consider a model with a topology 
as shown in figure 1 where all the transitions are 
possible except W→S3, W→S4, REM→S3 and 
REM→S4.  We get to this conclusion after 
analyzing the transition matrix which is obtained by 
observing more than 130 hypnograms corresponding 
to the same number of different recordings (table 1).   
    

TABLE 1. TRANSITION PROBABILITIES OBTAINED AFTER 
OBSERVING MORE THAN 130 HIPNOGRAMS 

Actual/ 
Next 

 
W S1 S2 S3 S4 REM 

W 84.54 13.09 1.71 0 0 0.31 

S1 11.57 50.31 32.38 0.03 0.01 5.16 

S2 2.39 5.34 87.52 3.01 0.03 1.12 

S3 0.64 0.25 18.98 70.66 8.75 0.10 

S4 0.51 0.11 1.11 9.12 88.41 0.03 

REM 2.21 4.22 0.91 0 0 91.90 

 
     In the initial instant all the patients are in W state. 
Thus the probabilities vector π  is 

S1 

W 

S2 

S4 

S3 

REM 

Fig. 1. Example of transition diagram among sleep stages 

                              ]0,0,1[ ⋅⋅⋅=π                             (2) 
     With respect to the mixtures of pdf in each state, 
we use gaussians. To train this mixture, we use a 
hypnogram per each one of the 8 training EEG 
recordings, classified in consensus by 2 human 
experts according to R&K. The recording are 
divided in 3 seconds segments, parameterized and 
grouped in a stage based on the hypnogram. 
     Now our goal is centred in estimating the 
parameters of the gaussians which define B in our 
HMM. In particular, for each state, we have a 
mixture with the following aspect: 

( ) ( )
1 1

( ) / , ,  1
M M

j t jl jl t jl t jl jl
l l

b o c b o c N o j Nμ
= =

= = Σ ≤∑ ∑ ≤
          (3) 

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006       338



where given a feature vector ot in the instant “t”, 
the probability of being observed in the state p is 
given by the sum of M gaussians, each one defined 
by its particular measure vector μjl, its covariance 
matrix Σ jl  and the weighted coefficients cjl of each 
gaussian of  the mixture. 
     For the estimation of N(μjl, Σ jl ), we proceed with 
the application of the Expectation Maximization 
(EM) algorithm. In our training phase, the gaussian 
mixtures showed good performance in B with EM 
isolated from A matrix. This matrix was designed 
based on the same recordings used for B. According 
to a Bayesian Information Criteria (BIC), we 
estimate empirically the optimum number of 
gaussians with a margin between 1 and 7, which 
results a good compromise between a good 
modelling, consistency in estimations and 
computational charge. The optimum number found 
has been 7. 
     In the test phase, using the Viterbi algorithm, the 
most probable state sequence is decodified. A 
detailed documentation can be studied in [4]. 
We extract features every 3 seconds. To be 
compatible with R&K, we analyze 10 segments of 
3s included in a 30s epoch and the histogram of the 
classification outputs is obtained.  
     From the histogram, it is estimated as the state in 
the epoch, the most frequent state. To present the 
results, we have grouped similar stages from the 
EEG point of view. So we have the stages W, 
S1/REM, S2 and S3/S4. These are the epochs we 
can separate if we only have one EEG channel. 

5   Experiments and Results 
The scoring results are given in % of agreement with 
E1-E2 (agreement rate between human experts who 
score the recordings separately) and are presented in 
table 2 considering the recordings which are present 
in the training and test phase.  Mean, maximum and 
minimum values are given for each 
parameterization. 
    The optimum values in each parameterization are 
the following: AR (order = 6), Fbank (number of 
filters = 43), DCT (43 filters, order = 40). 
As can be observed, the feature with the best results 
is LFCC. This parameter has a global success rate of 
86.61% for the training patients set. The coincidence 
rate between experts is 85.7% (E1-E2). For the test 
recordings with good sleep quality, the rate is 
80.1%. In this case, E1-E2 is 86.51%. In case of 
poor sleep quality the rate is 73.4% and E1-E2 is 
85.02%. 
In figure 2a we can observe a representation of the 
sleep stage evolution for one recording of our test 
group from the experts’ point of view, and in figure 

2b, the result of our automatic system. LFCC has 
been the parameterization used in that experiment. 
     Table 3 represents the confusion matrix for test 
recordings with good sleep quality. 

 
TABLE 2. CLASSIFICATION RESULTS IN % FOR EACH 

PARAMETERIZATION TECHNIQUE IN TRAINNING AND TEST PHASE 

Training (TR) AR Fbank LFCC E1-E2 

Maximum rate % 82.02 85.85 88.98 87.79 
Minimum rate % 69.43 77.1 80.67 77.49 

Mean rate % 77.59 83.1 86.61 85.7 

Test (Good Sleep 
Quality) (TG) AR Fbank LFCC E1-E2 

Maximum rate % 80 89.54 92.76 89.88 
Minimum rate % 48.69 48.48 67.61 62.1 

Mean rate % 61.65 75 80.1 86.51 

Test (Poor Sleep 
Quality) (TP) AR Fbank LFCC E1-E2 

Maximum rate % 75.12 78.55 81.39 87.23 

Minimum rate % 48.21 66.11 63.89 64.26 

Mean rate % 69.9 72 73.4 85.02 

 
 
     
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
     
TABLE 3. CONFUSION MATRIX FOR TEST RECORDINGS WITH GOOD SLEEP QUALITY 

 W S1/REM S2 S3 /S 4 

W 664 121 8 1 

S1/REM 114 1736 76 0 

S2 38 579 2943 82 

S3 /S 4 3 89 381 669 

 
6   Differences between Sleepers 
Table 4 shows the parameters which can be obtained 
directly from the inspection of the hypnogram on the 
three recording groups (TR, TG and TP). These 
parameters are: 
- Time percentage in stage W, S1/REM, S2 and 

S3/S4. 
- TIB (Time in bed). 
- Sleep period time (SPT, Time in bed (from 

lights off) minus wake before sleep onset and 
minus wake after last epoch of sleep). 

- Total Sleep Time (TST, Sleep period time minus 
wake time after sleep onset). 

Fig. 2. a) Manual hypnogram b) Automatic hypnogram
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- Sleep latency (SL, Time between lights off and 
the first epoch of S2). 

- Sleep efficiency index ([Total sleep time/time in 
bed (from lights off to lights on)] * 100).     

TABLE 4 SLEEP PARAMETRS FOR DIFFERENT GROUPS 

 

 

 
We can establish a comparison between the results 
obtained by the automatic and manual hypnogram. 
The results express the mean value of the parameters 
for the total set of people which take part in each 
group. Minimum and maximum parameter values 
are also showed in table 4.  
     The first difference between groups is the sleep 
efficiency index (SEI). This is higher in sleepers 
with good sleep according to SSA criteria (TR and 
TG groups) than in sleepers with poor sleep quality 
(TP group). For group TR, SEI is 92% with manual 
classification and 91.44% with automatic 
classification.  For group TG, SEI is 87.76% 
following the manual scoring and 86.84% with our 
automatic system. These four values are quite 
different from the ones obtained for TP (68.55% 
with manual scoring and 58.9% with automatic one). 
As consequence of SEI results, TST is higher in TR 
and TG groups than in TP group.  
     Similar conclusion can be obtained when direct 

manual and automatic hypnogram are inspected. 
Thus the percentage in W stage is greater in group 
TP than in groups TR and TG. This parameter is 
directly related to SEI since the higher the 
percentage in W, the lower the SEI. Percentage in 
S3/S4 is another measure which corresponds to a 
longer deep sleep period. In this sense, percentage in 
S3/S4 is grater in TR and TG groups than in TP 
group. Finally sleep latency is grater in TP group 
than in TR and TG what indicates longer time until 
S2 stage.   

Sleep parameter  

7   Conclusions 
We have presented a study that describes a practical 
implementation of an automatic sleep stage scoring 
following R&K in order to obtain differences 
between good and bad sleepers. This model could be 
applied to another kind of representation as 
suggested in [5] since it could contain some 
improvements as a higher time resolution with 3 
seconds segmentation and a possible probability 
stage representation instead of fix 30 s epochs. 
     The proposed model is validated with the only 
methodology which nowadays is used in most of 
sleep units and research centres, R&K. Thus we can 
measure the agreement rate of our system, since we 
have the manual hypnograms scored by experts. We 
propose an analysis based on an only EEG signal if 
we overlap S3 and S4 stages and on the other hand, 
S1 and REM stages.  
     Automatic scoring has been compared to the 
results obtained by the experts. Finally we have 
could detect and measure some differences between 
groups with good and bad sleep according to our 
automatic system. 
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Group TR 
Manual 

Hypnogram 
Automatic 

Hypnogram 
Percentage stage W 7.62[4-11.9] 8.39[2.6-16.51] 

Percentage stage 
S1/REM 

33.4[28-45.2] 33.04[24.76-41.44] 

Percentage stage  S2 46.85[39.3-55.9] 39.78[26.1-51.41] 

Percentage stage 
S3/S4 

16[6-25.1] 18.99[4.7-36.32] 

Total sleep time 
(TST) 

437.31[410.5-460] 435.94[402-466.5] 

Sleep latency (SL) 15.31[8-27] 14.87[6.5-27.5] 

Sleep efficiency 
index (SEI) 

92[88.4-96] 91.44[84.01-97.39] 

Sleep parameter  
Group TG 

Manual 
Hypnogram 

Automatic 
Hypnogram 

Percentage stage W 11.11[1.77-19.36] 11.92[2.82-24.95] 

Percentage stage 
S1/REM 

25.46[19.93-32.67] 33.41[19.26-46.39] 

Percentage stage  S2 48.17[37.91-64.71] 45.1[37.34-61.48] 

Percentage stage  
S3/S4 

15.1662[7.05-22.54] 10.05[0.31-20.67] 

Total sleep time 
(TST) 

411.875[304.5-469] 410.38[297.5-464] 

Sleep latency (SL) 25.36[5.5-43] 31.41[6-57] 

Sleep efficiency 
index (SEI) 

87.76[69.75-97.91] 86.84[68.15-96.86] 

Sleep parameter  
Group TP 

Manual 
Hypnogram 

Automatic 
Hypnogram 

Percentage stage W 29.42 [17-48.4] 32.95[12.84-53.62] 

Percentage stage  
S1/REM 

20.4 [16.6-25.6] 29.71[16.83-48.33] 

Percentage stage  S2 28.11 [7.4-51.8] 29.3[19.83-38.41] 

Percentage stage 
S3/S4 

9.96 [0.7-18.3] 8.03[0.42-16.07]   

Total sleep time 
(TST) 

330.2 [212.5-397.5] 313.69[190.5-417.5] 

Sleep latency (SL) 34.43 [4.5-73] 44[190.5-417.5] 

Sleep efficiency 
index (SEI) 

68.55 [41.6-83] 58.9[25.83-87.16] 
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