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1 Introduction
Linear systems over commutative rings

have largely studied in recent last years. This
systems appear in literature when for exam-
ple, one studies linear systems depending on a
parameter or linear systems with delays. We
recall that in practice, the control requires
time to respond, so the feedback equation is in
the form ẋ(t) = Ax(t)+BFx(t−a)+BFu(t),
the case a = 0 is given only if the mechanism
respond instantaneously. This kind of systems
are called systems with delays and they can be
studied as a systems with coefficients in the
ring of polynomials in one determinate over a
field.

Let R be a commutative ring. We de-
note by M the set of pairs of matrices {x =
(A,B) ∈ Rn×n×Rn×m} representing m-input
linear systems ẋ = Ax + Bu over R.

One of the topics in linear systems is an-
alyze the possibility of adjusting the eigenval-
ues of a given system by feedback.

The feedback group acting on such sys-
tems is the group generated by the following

elementary actions:

A1 Change of basis P−1 ∈ Gln (R) in the
state-space Rn, which transforms:

A → A1 = PAP−1

B → B1 = PB
A2 Change of basis Q ∈ Glm (R) in the

input-space Rm, which transforms:

A → A1 = A

B → B1 = BQ
A3 Feedback action F ∈ Rm×n, which

transforms:

A → A1 = A + BF

B → B1 = B

Definition 1 We say that the systems
x and x1 are feedback equivalent if x can be
transformed to x1 by one ore more elements
of the feedback group acting on M:

Two systems x = (A,B) and x1 =
(A1, B1) in M are equivalent if and only if

(A1, B1) = (P−1AP + P−1BK, P−1BQ)
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for some P ∈ Gln(R), Q ∈ Glm(R), K ∈
Rm×n.

The stabilizer is the set of the actions leav-
ing fixed the given system. So the equiva-
lent systems under feedback equivalence can
be observed as a quotient space of the feed-
back group by the stabilizer.

The aim of this paper is the characteriza-
tion of stabilizer set of a pair of matrices under
equivalence relation considered in terms of the
set of solutions of a matrix equation.

2 Equivalence relation as a
group action

The equivalence relation defined can be
seen as an action over M by a certain group.

Let G = Gln(R) × Glm(R) × Rm×n be
the feedback group. Using short notations
g = (P,Q, K) ∈ G and x = (A,B) ∈ M,
we note that multiplication in G, action of the
group G, and equivalence condition are as fol-
lows

g1g2 = (P1P2, Q1Q2,K1P2 + Q1K2) ∈ G,

g ◦ x = P−1
(
A B

) (
P 0
K Q

)
=

= (P−1AP + P−1BK, P−1BQ) ∈M,

x2 = g ◦ x1.

Unit element of G has the form e = (1n,1m, 0),
where 1n and 1m are the identity matrices.
The inverse element of g = (P,Q, K) is g−1 =
(P−1, Q−1,−Q−1KP−1).

We observe that the operation ◦ is an ac-
tion over M by the group G, because verifies
the necessary and sufficient conditions:

1. associative: g2 ◦ (g1 ◦ x) = (g1g2) ◦ x,

2. the unit element is the unit operator:
e ◦ x = x ∀x ∈M.

This action permit us to describe the equiva-
lence classes as orbits.

3 Orbit and stabilizer
Let us fix some pair of matrices x0 =

(A0, B0) and define the mapping αx0 : G −→

M, αx0(g) = g ◦ x0, g ∈ G. Then, the orbit
O(x0) and stabilizer set S(x0) of the pair x0

are defined as follows:

O(x0) = {x ∈M|∃g ∈ G s. t. αx0(g) = x},
S(x0) = {g ∈ G|αx0(g) = x0}.

(1)
The orbit of x0 is the set of pairs equiva-

lent to x0. It is clear that Sx0 is a subgroup
of G.

Proposition 1 Let x1 ∈ O(x0). Then,
the stabilizer sets S(x0) and S(x1) are related
in the form:

S(x1) = g1S(x0)g−1
1 ,

where g1 ∈ G is such that g1 ◦ x0 = x1.

Proof. For all g ∈ S(x0) we have g ◦
x0 = x0, then g ◦ (g−1

1 ◦ x1) = g−1
1 ◦ x1 and

(g1gg−1
1 ) ◦ x1 = x1. ¤

So, it suffices to compute the stabilizer set
of a selected element in the orbit.

Moreover, the map αx0 induces a bijection
β : G/Sx0 −→ O(x0) in the following man-
ner. Let S(x0), we can model the G-action
on the orbit O(x0) as follows, we denote by
g̃ = gS(x0) = {gg1 | ∀g1 ∈ S(x0)}, and we
consider the left translation:

t : G × G/S(x0) −→ G/S(x0)
(g, g̃1) −→ g̃g1

now, we define β : G/S(x0) −→ O(x0) by
β(g̃) = αx0(g). The map β is a bijection and
the diagram

G × G/S(x0)
t−→ G/S(x0)

id×β ↓ β ↓
G × O(x0) −→ O(x0)

(2)

is commutative.
We are interested in computing the stabi-

lizer sets for any pair of matrices (A,B) in M,
and we have the following proposition.

Proposition 2 S(A, B) is the subset of
elements g = (P, Q, K) ∈ G solution of the
following generalized Sylvester equation with
scalars in a commutative ring R:

[A,P ] + BK = 0
BQ− PB = 0

}
(3)
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Proof. It suffices to observe that S(A,B)
is the set of elements (P, Q,K) ∈ G such that

P
(
A B

)
=

(
A B

) (
P 0
K Q

)
.

¤
This equation has been solved by M.A.

Beitia, J.M. Gracia, I. de Hoyos [1], in the
case where R is the field of complex numbers.

Notice that, the generalized Sylvester
equation (3), can be seen as the Ker of the fol-
lowing R-module morphism defined over the
algebra G̃ = Rn×n × Rn×n × Rm×n associate
to the group G to the space of pairs of matrices

α̃x0 : G̃ −→M
(X, Y, Z) −→ X

(
A B

)− (
A B

)(X 0
Z Y

)

Corollary 1

S(A,B) = Ker α̃x0 ∩ G.

Suppose now that R is a continuous field,
so G is an analytic group and M an analytic
variety. In this case G̃ is the tangent space to
G and

1. Tx0O(x0) = Im α̃x0 ⊂M,

2. TeS(x0) = Ker α̃x0 ⊂ TeG.

4 Explicit description of stabi-
lizer set

Proposition 1, ensures that it suffices to
solve system 3, for reduced canonical forms
of the orbits to obtain explicit description of
stabilizer sets of pairs of matrices.

Let R be a commutative ring such that
finitely generated projective R-modules are
free (for example, R = k a field or R a prin-
cipal ideal domain, a local ring or a polyno-
mial ring over a field R = k [x1, ..., xn]). Let
x = (A,B) ∈ Rn×n × Rn×m be a linear sys-
tem such that the feedback invariant module

Mx
1 = Coker (B) = Rn/Im (B) is projective

and hence free. Then, by [2, Th. 1.11] x is
feedback equivalent to a system on the form

((
0 0
B1 A1

)
,

(
1τ1 0
0 0

))
,

where τ1 = n− rg (Mx
1 ).

Theorem 1 The stabilizer set S ((A, B))
of a system (A, B) of the above form is

S ((A1, B1))×Glm−τ1 (R)×R(m−τ1)×τ1×
×R(m−τ1)×τ1 ×R(m−τ1)×(n−τ1)

in the sense of an element g =
((P,Q, F ) , U,K, L,M) ∈ S ((A,B)) acts on
the linear system (A,B) as the action

((
Q F
0 P

)
,

(
Q−1 0
K U

)
,

(
FB1 FA1

L M

))
,

which stabilize (A,B); that is, g ◦ (A,B) =
(A,B) .

Proof. Consider the equations PB = BQ
and [P, A] = BF and solve for P, Q, F :

(
P11 P12

P21 P22

)(
1τ1 0
0 0

)
=

(
1τ1 0
0 0

)(
Q11 Q12

Q21 Q22

)

that is to say
(

P11 0
P21 0

)
=

(
Q11 Q12

0 0

)

equivalently we have that,

P11 = Q11 and P12 = 0 and Q12 = 0

Now from the equality [P, A] = BF one has

(
P11 P12

0 P22

)(
0 0
B1 A1

)
−
(

0 0
B1 A1

)(
P11 P12

0 P22

)

=
(

P12B1 P12A1

P22B1 −B1P11 P22A1 −B1P12 −A1P22

)

=
(
1τ1 0
0 0

)(
F11 F12

F21 F22

)
=

(
F11 F12

0 0

)
.
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That is to say

F11 = P12B1

F12 = P12A1

P22B1 −B1P11 = 0

P22A1 −B1P12 −A1P22 = 0

And the last two equalities correspond to the
stabilizer of system (A1, B1). To obtain the
notation of the Theorem we rename:

F = P12 Q = P11 U = P22

The rest of indeterminate are freely chosen. ¤

Theorem 1 The stabilizer set of the sys-
tem

(
(0n×n) ,

(
1n,0n×(m−n)

))
is

R(m−n)×n×Glm−n (R)×Gln (R)×R(m−n)×n

in the sense of an element g = (X, U, V, Y ) ∈
S (

(0n×n) ,
(
1n,0n×(m−n)

))
acts on the linear

system (0n×n) ,
(
1n,0n×(m−n)

)
as the action

(
V,

(
V −1 0
X U

)
,

(
0
Y

))

which stabilize
(
(0n×n) ,

(
1n,0n×(m−n)

))
;

that is, g
(
(0n×n) ,

(
1n,0n×(m−n)

))
=(

(0n×n) ,
(
1n,0n×(m−n)

))
.

Proof. It is analogous to the above result.
¤

As a consequence of the above results we
can give the stabilizer set of a Brunovsky sys-
tem over a projective-free ring. The descrip-
tion of the stabilizer set depends on the invari-
ants Mi = Coker

(
B, AB, ..., Ai−1B

)
.

Note that if R is a commutative ring such
that finitely generated projective R-modules
are free then a m-input reachable linear sys-
tem x = (A,B) over Rn is of Brunovsky type
(feedback equivalent to a Brunovsky canoni-
cal form) if and only if all invariant modules
Mx

i = Rn/Im
(
B,AB, ..., Ai−1B

)
are projec-

tive and hence free. For this class of linear
systems Theorem 1 can be applied recursively;
that is to say

S(A,B) = S(A1, B1)×Glm−τ1 ×R(m−τ1)×τ1

×R(m−τ1)×τ1 ×R(m−τ1)×(n−τ1),

and τ1-input reachable linear system (A1, B1)
over Rn−τ1 is newly of Brunovsky type.
Therefore one has a new reachable linear sys-
tem (A2, B2) with (τ2 − τ1)-inputs over Rn−τ2

such that the stabilizer set S (A1, B1) splits
as a direct product where a direct factor is
the stabilizer set S (A2, B2). Our next result
deals with the problem of giving the stabilizer
set S (x) of a Brunovsky linear system x in
terms of the controllability indices of x.

Example 1 A linear system x = (A,B)
with m = 6, n = 5 and M1 = R2 and M2 =
0 are equivalent to the Brunovsky canonical
form

((
03×3 02×2

12 0 0 0

)
,

(
13 03×3

02×3 02×3

))

=

((
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0

)
,

(
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

))

Or in its (Usual) Canonical form

xc =

((
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

)
,

(
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0

))

The stabilizer set is, By Theorem 1

S ((02×2) , (12,02×1))×Gl6−3 (R)
×R(6−3)×3 ×R(6−3)×3 ×R(6−3)×(5−3) =

= S ((02×2) , (12,02×1))×Gl3 (R)×R3×3

×R3×3 ×R3×2 = (a)

By Theorem 2

(a) =(
R(3−2)×2 ×Gl3−2 (R)×Gl2 (R)×R(3−2)×2

)
×Gl3 (R)×R3×3 ×R3×3 ×R3×2 =

R1×2 ×Gl1 (R)×Gl2 (R)×R1×2 ×Gl3 (R)
×R3×3 ×R3×3 ×R3×2.

In the general case, let R be a projective-
free ring. Let x = (A,B) be a m-input
Brunovsky system over Rn. It follows by
[4] that (1) the feedback invariants Nx

i =
Im

(
B, AB, ..., Ai−1B

)
, Mx

i = Rn/Nx
i and

Nx
i /Nx

i−1 are free for all i ≥ 0 (we set Nx
0 = 0);
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and (2) there exists an index s > 0 such that
Nx

s = Rn and consequently Mx
s = 0 because

of x is reachable.
Put

Nx
i
∼= Rτi , Mx

i
∼= Rxi , and Nx

i /Nx
i−1

∼= Rξi

and note that one has:
(1) 0 = τ0 < τ1 < · · · < τs = n
(2) xi = n− τi

(3) ξi = τi − τi−1 and that ξi+1 ≤ ξi.

Theorem 3 With the above notations the
decomposition of system x is obtained in the
following way:

(a) System (A,B) can be brought (by a
suitable feedback action) to

((
0 0
B1 A1

)
,

(
1ξ1 0
0 0

))

where (A1, B1) is a ξ1−input Brunovsky sys-
tem over Rx1

(b) For i = 1, ..., s−1; system (Ai, Bi) can
be brought (by a suitable feedback action on the
whole system (A,B)) to

((
0 0

Bi+1 Ai+1

)
,

(
1ξi+1 0
0 0

))

where (Ai+1, Bi+1) is a ξi+1−input Brunovsky
system over Rxi+1

Proof. (Sketch, see [2] for details). It
suffices to complete bases taking in mind that,
because of invariant modules Nx

i , Mx
i , and

Nx
i /Nx

i−1 are free, one has the following de-
compositions of Rm and Rn

Rm ∼= Nx
1 ⊕Mx

1

Rn ∼= Nx
1 ⊕Nx

2 /Nx
1 ⊕ · · · ⊕Nx

s /Nx
s−1 ¤

As a consequence of the above result it is
clear that we may give the stabilizer set of a
Brunovsky linear system over a projective-free
ring only from the knowledge of its feedback
invariants: Suppose that we have the ranks

rk
(
B, AB, ..., Ai−1B

)
= τi

for all i ≥ 1. Since x = (A,B) is Brunovsky
it follows that there exists a index s such that
τs−1 < τs = n. We may obtain ξ1 = τ1 and
ξi = τi − τi−1. Then

S (As, Bs) =
Glξs−1−ξs ×R(ξs−1−ξs)×ξs ×R(ξs−1−ξs)×ξs ,

and
S (As−1, Bs−1) =
S (As, Bs)×Glξs−2−ξs−1 ×R(ξs−2−ξs−1)×ξs−1

×R(ξs−2−ξs−1)×ξs−1 ×R(ξs−2−ξs−1)×σs−1 ,
and in a finite steps obtain the sequence
S (As, Bs) , S (As−1, Bs−1) , ,..., S (A1, B1) ,
S (A,B). In particular we have the following
result:

Corollary 2 The stabilizer set of a
Canonical Controller form is R× = Gl1 (R) =
Units (R) and it is independent of the dimen-
sion n of system.

5 Conclusions
In the set of linear systems M = {ẋ =

Ax + Bu} with scalars in a commutative
ring R, we study the stabilizer set of the
group action of the full feedback group G =
{(P, Q,K)} with P ∈ Gln(R), Q ∈ Glm(R)
and K ∈ Rm×n on the set of m-input n-
dimensional linear systems M = Rn×n ×
Rn×m under feedback equivalence.
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