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Abstract: - The paper presents a study on the assessment of node voltage sensitivity in distribution networks 
with respect to variations of node active and reactive powers. The work provides an analytical tool to quantify 
node voltages variation due to injections of node powers at any MV distribution network injection point. 
Simple analytical expressions have been developed to link node voltages to node active and reactive powers 
through network electrical parameters, in order to define and calculate appropriate sensitivity coefficients. 
A useful graphical representation is also given for the derived expressions, providing immediate access to 
qualitative and quantitative information on node voltages sensitivity. The proposed examples are referred to 
typical conductor sections used with underground cable lines and uninsulated overhead lines in MV distribution 
networks. 
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1 Introduction 
The aim of the work is to provide a simple analytical 
tool to quantify node voltage variations due to 
injections of active and reactive power at one or 
more nodes of MV distribution networks. In other 
words, the paper presents a study on the assessment 
of node voltages sensitivity with respect to variations 
of node powers. 
Voltage sensitivity analysis is the base for the 
solution of various power system optimisation 
problems, related, for example, to voltage regulation, 
loss reduction, network expansion planning, optimal 
placement of reactive sources and generators, etc. 
 [1],  [2],  [3]. 
In particular, the framework of the proposed study is 
the research of new solutions for innovative 
management of “active” distribution networks  in 
order to implement real time control of power fluxes 
in presence of distributed generation (DG). The need 
for controlling active and reactive power injections 
to guarantee correct distribution operation in 
presence of DG calls for analytical tools that are 
suitable to be used by appropriate automatic control 
algorithms. This is, for example, the case of on-line 
control systems used to avoid that voltage and 
current constraints  [4] are violated during normal 
operation of distribution networks. 
Of course, the analytical expressions that will be 
presented are not intended to substitute existing 
powerful load flow programs, which are able, among 
other functions, to perform network sensitivity 
assessment. The considered expressions are useful to 
be integrated into ad hoc optimisation tools to 

control node active and reactive powers, e.g. in 
automatic voltage regulation procedures or in DG 
installation planning in distribution networks. In 
such a context, it is required to know network 
sensitivity in order to assess the effectiveness of 
possible contribution of distributed generators to 
voltage regulation procedures by controlling their 
power output. 
In Section 2, the method used to obtain mathematical 
expressions that link node voltages to node active 
and reactive powers is described. 
Further, linearised equations are described to derive 
useful closed analytical expressions to calculate 
node voltages. The difference in the results provided 
by the two formulations (linear and non linear) is 
small due to the fact that voltage drops are small as 
well in distribution networks. Consequently, 
linearised expressions can be used appropriately in 
assessing sensitivity coefficients for node voltages in 
this context. These coefficients are the elements of 
sensitivity matrices, called [SP] and [SQ], which 
contain measures of voltage variations due to, 
respectively, active and reactive node powers. 
In Section 3, a graphical representation of the 
derived voltage sensitivity coefficients is given 
taking into account practical examples referred to 
MV networks. Such an approach is useful to get 
immediate perception of voltage sensitivity variation 
as node distance from the origin varies. Further, it 
can easily be highlighted how section and type of 
conductor (overhead line or underground cable line) 
influence network sensitivity. 
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2 Analytical Model 
In this section the analytical model used to perform 
the sensitivity analysis will be described. 
Let us consider a three-phase symmetrical, radial 
distribution network with n nodes and n branches, 
where we define as “nodes” the points of load 
connection, the points of line characteristics change 
and the junctions, and as “branches” the conductor 
segments between two nodes. 
The nodes can be numbered according to the 
following rule  [5]: the “origin” of the network 
(typically a HV/MV primary substation) takes the 
number 0, while the other nodes are numbered 
sequentially imposing that a “receiving” node takes a 
number higher than the “sending” node nearer to it. 
The terms “receiving” and “sending” are used under 
the assumption that in a traditional radial network, 
i.e. without distributed generators, the power flow is 
directed from a lower to a higher number. The 
branches are identified by the same number as their 
receiving node, as shown in Fig. 1. 
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Fig. 1. One-line diagram of a three-phase symmetrical, 

radial distribution network. 

 
This numbering method allows a simple storage of 
the network structure in a single square matrix 
(called incidence matrix, [A]) whose dimension is 
(nxn). In particular, the rows corresponds to the n 
branches and the columns to the nodes. 
The elements of [A] describe the network topology 
and are equal to 1 if the node corresponding to 
column j is fed through the branch corresponding to 
row i, 0 otherwise. 
The calculation of the branch flows is easily obtained 
applying the “mesh method” for network analysis. It 
can be easily shown that: 

[ ]J A I⎡ ⎤ ⎡ ⎤= ⋅⎣ ⎦ ⎣ ⎦                          (1) 
where: 

[ ]I   is the vector of the load currents, dimension 
(nx1); 
[ ]J  is the vector of the branch currents, dimension 
(nx1). 

 
The network complex impedance is equal to: 

[ ] [ ] [ ] [ ]AZAZ b
t ⋅⋅=   (2) 

where [ ]bZ  is the diagonal matrix, dimension (nxn), 
whose elements are the complex impedances of the 
corresponding branches. 
The main diagonal elements of  [ ]Z , ( )iiZ , are equal 
to the sum of the branch impedances forming the 
path from the origin to the node i. 
The off-diagonal elements, ( )ijZ , are equal to the 
sum of the branch impedances forming the path from 
the origin to the common node of the paths formed by 
the origin and the nodes i and j, respectively. 
Let us consider node h  and its voltage phasor, hV . 
We will assume that 0V  is known. 
Let hV∆  be the voltage drop across branch h  and 

hU∆  the total voltage drop from node 0  to node h : 

hh VVU −=∆ 0                           (3) 
[ ] [ ] [ ]VAU t ∆⋅=∆                         (4) 

where: 
[ ]U∆  is the column vector ( )1xn  whose elements 
are the voltage drops indicated by hU∆ ; 
[ ]V∆  is the column vector ( )1xn  whose elements 
are the voltage drops indicated by hV∆ . 

 
Vector [ ]V∆  can be expressed as follows: 

[ ] [ ] [ ]JZV b ⋅=∆                          (5) 
As known, cross parameters can usually be neglected 
in analysis of distribution networks. 
Substituting expression (5) in (4), we obtain the 
following expression for vector [ ]U∆ : 

[ ] [ ] [ ] [ ]JZAU b
t ⋅⋅=∆                     (6) 

then, if we consider expression (1), we also have: 
[ ] [ ] [ ] [ ] [ ]IAZAU b

t ⋅⋅⋅=∆                  (7) 
Considering the definition of [ ]Z  given by (3), 
expression (7) is equivalent to: 

[ ] [ ] [ ]IZU ⋅=∆                           (8) 
Node voltages vector [ ]V  is the given by the 
following: 

[ ] [ ] [ ] [ ] [ ] [ ]IZVUVV ⋅−=∆−= 00               (9) 
For the i-th node, the complex power iS  is defined 
as: 

 
*
ii i i iS V I P jQ= = +                   (10) 

where: 
iV  is the voltage phasor at node i; 

iI  is the current phasor at node i; 
*
iI  is the complex conjugate of iI ; 
iP  is the net real power in the i-th node; 

iQ  is the net reactive power in the i-th node. 
If we express (10) by means of the corresponding 
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matrixes we obtain: 

[ ] [ ] [ ] [ ]QjPIVS ⋅+=⎥⎦
⎤

⎢⎣
⎡⋅=

*                (11) 

where [ ]P  and [ ]Q  are the column vectors, 
dimension ( )1xn , whose elements are, respectively, 
the node active and reactive powers. 
The complex conjugate of [ ]S  is given by: 

[ ] [ ] [ ]QjPIVS ⋅−=⋅⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡ **               (12) 

From this equation, it is possible to obtain an 
expression for node currents vector [ ]I : 

[ ] [ ] [ ]

[ ]*V

QjPI ⋅−
=                        (13) 

Consequently, substituting expression (13) in (9), [ ]V  
can be written as: 

[ ] [ ] [ ] [ ] [ ]

[ ] ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅−

⋅−=
*

0

V

QjP
ZVV                (14) 

Finally, considering that [ ] [ ] [ ]XjRZ ⋅+= , where [ ]R  
and [ ]X  are ( )nxn  matrixes, respectively, real and 
imaginary part of network impedance matrix, we 
obtain the following expression for [ ]V : 

[ ] [ ] [ ] [ ]( ) [ ] [ ]

[ ] ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅−

⋅⋅+−=
*

0

V

QjPXjRVV   (15) 

 
 
2.1 Linear Expressions and Sensitivity 

Coefficients 
Simplified linear expressions can be derived from 
(15) under the following hypotheses (commonly 
accepted in distribution networks analysis): 
- the phase difference between node voltages is 
negligible and, as a consequence, if phasor  0V  is 
chosen on the real axis, only the real part of voltage 
[ ] [ ]VrealV =  is considered; 
- constant current models are considered for loads 
(node powers are referred to system nominal voltage 
instead of actual node voltage). 
 
Consequently, expression (15), can be written as: 

[ ] [ ] [ ] [ ] [ ] [ ]
nomV

QXPRVV ⋅+⋅
−= 0               (16) 

The rms value of voltage at node i, Vi, can expressed as 
follows: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅+⋅⋅−= ∑∑

==

N

j
jij

N

j
jij

nom
i QXPR

V
VV

11
0

1      (17) 

Such expressions have been compared to the ones 
derived from non linear equations (15). The 
difference in the results provided by the two 

formulations (linear and non linear) is small due to 
the fact that voltage drops are small as well in 
distribution networks. Consequently, linearised 
expressions can be used appropriately in assessing 
sensitivity coefficients for node voltages in this 
context. 
As obvious, the voltage at the i-th node not only 
depends on the i-th node powers, but also on the 
powers injected or absorbed at the other network 
nodes: 

),...,,,,...,,( 2121 nnii QQQPPPVV =          (18) 
The total differential of function iV  is given by: 

∑∑
==

⋅
∂
∂

+⋅
∂
∂

=
n

j
j

j

i
n

j
j

j

i
i dQ

Q
V

dP
P
V

dV
11

         (19) 

where we find the sensitivity coefficients, 
j

i

P
V
∂
∂  and 

j

i

Q
V

∂
∂ , which, from (17), be expressed as: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⋅−=
∂
∂

⋅−=
∂
∂

ji
nomj

i

ji
nomj

i

X
VQ

V

R
VP

V

1

1

                   (20) 

with .,...,2,1, nji =  
 
The above derivatives can be regarded as voltage 
sensitivity coefficients with respect to node powers 
variation. Their physical meaning is the following: 
- for ji =  it provides voltage variation at the i-th 
node due to unity variation of the i-th power; 
- for ji ≠  it provides voltage variation at the i-th 
node due to unity variation of the j-th power. 
 
Considering the n equations given by expression 
(19) we have: 

⎥
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n
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nn
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 (21) 

We can define a sensitivity matrix, [ ]S , ( )nxn 2 , 
whose elements are the sensitivity coefficients 
defined by (20): 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

n

n

n

n

n

nn

nn

Q
V

Q
V

P
V

P
V

Q
V

Q
V

P
V

P
V

S

......

..................

......

1

1

1

11

1

1

     (22) 

 
Matrix [ ]S  can be written as: 
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[ ] [ ]QP SSS =                           (23) 

in which the two sub-matrixes [ ]PS  and [ ]QS , 
( )nxn , are highlighted: 

[ ] [ ]

[ ] [ ]

⎪
⎪
⎪
⎪
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⎪
⎪

⎩

⎪
⎪
⎪
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−=
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∂
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=

−=

⎥
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      (24) 

Assessment of the elements of sensitivity matrix [ ]S , 
indicated by  

( ) ji
nomj

i
ijP R

VP
V

S ⋅−=
∂
∂

=
1                  (25)  

and 

( ) ji
nomj

i
ijQ X

VQ
V

S ⋅−=
∂
∂

=
1                (26) 

allows to quantify voltage variations at each network 
node due to active and reactive power variations at 
any other node. 
Expressions (25) and (26) are of general validity and 
can be applied to all radial distribution networks or 
radially operated distribution networks.  
Sensitivity coefficients ( )

ijpS  and ( )
ijQS  can be 

expressed as functions of line longitudinal parameters, 
(line resistance and reactance per kilometre) by 
introducing the following quantities: 

ij

ij
ij L

R
r =                              (27) 

and  

ij

ij
ij L

X
x =                             (28) 

where: 
Rij and Xij are, respectively, real and imaginary part of 
impedance jijiji XjRZ ⋅+= ;  

jiL  is: 
- for ij =  the sum of the branch lengths forming 
the path from the origin (node 0) to node i; 
- for ij ≠  the sum of the branch lengths forming 
the path from the origin to the common node of 
the paths formed by the origin and nodes i and j. 

Parameters rij and xij represents the weighted 
average, with respect to branches length, of the 
longitudinal parameters per kilometre of the 
branches belonging to the common path from the 
origin to nodes i and j.  

Parameter rij is a function of: 
- branches length; 
- branches conductor section; 
- branches conductor resistivity. 

Parameter xij is a function of: 
- branches length; 
- branches conductor section; 
- frequency; 
- geometric characteristics of electrical lines. 
 

Substituting expressions (27) and (28) in (25) and 
(26) we obtain: 

( ) ijji
nom

ijP rL
V

S ⋅⋅−=
1                   (29) 

( ) ijji
nom

ijQ xL
V

S ⋅⋅−=
1                   (30) 

Such expressions show that the sensitivity 
coefficients depend on network extension (path 
length) and, respectively, on rij and xij. 
Such expressions show that the most sensitive 
networks are the ones with extended lines and/or 
characterised by high value longitudinal parameters 
(rij and xij). Note that the ratio between ( )ijPS  and 

( )
ijQS  is given by ijij xr / .  

Assuming the same section and type of conductor for 
all the network branches, expressions (27) and (28) 
can be written as: 

xLX jiji ⋅=  and rLR jiji ⋅=  
where r and x are line resistance and reactance per 
kilometre. 
Since expressions (29) and (30) can be written as: 

( ) rL
V

S ji
nom

ijP ⋅⋅−=
1                   (31) 

( ) xL
V

S ji
nom

ijQ ⋅⋅−=
1                   (32) 

then 
( )
( ) x

r
S

S

ijQ

ijP
=                               (33) 

 
 
3 Graphic representation of (SP)ij 
and (SQ)ij  
Assuming the same section and type of conductor for 
all the network branches, it is possible to provide an 
interesting graphical representation of ( )ijPS  and 
( )

ijQS . 

Plotting sensitivity coefficients vs. jiL , we obtain 

straight lines whose slop is, respectively, r
Vnom

⋅−
1  

and x
Vnom

⋅−
1 . 
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Such a graphical representation is useful to get 
immediate perception of sensitivity variation with 
node distance from the origin. Further, it can be 
easily highlighted how section and type of conductor 
(overhead line or underground cable line) influence 
the network sensitivity. 
In the following, the graphical representation of 
voltage sensitivity coefficients (Sp)ij and (SQ)ij for a 
20 kV network is given, considering both cases of 
underground cable lines and uninsulated overhead 
lines with conductor section of 35mm2 (Fig. 2) and 
95 mm2 (Fig. 3).  
The following parameters have been used:  
section=35mm2: cable line r = 0.675 Ω/km 

 cable line x = 0.2 Ω/km 
 overhead line r = 0.519 Ω/km 
 overhead line x = 0.388 Ω/km 

section= 95mm2:cable line r = 0.249 Ω/km 
 cable line x = 0.18 Ω/km 
 overhead line r = 0.193 Ω/km 
 overhead line x = 0.357 Ω/km 

From both figures it can be noted that the greater the 
node distance from the origin, the higher the voltage 
sensitivity. As for maximum distances considered 
for peripheral nodes, 15 km has been taken as a 
realistic value for actual distribution networks. 
In Fig. 2 it is apparent that sensitivity with respect to 
active power injection is greater than the one with 
respect to reactive power injection. This is especially 
true for cable lines, in which r/x = 3.38 for the 

considered case. 
In the nodes that are 15 km far from the origin the 
sensitivity coefficients reach the highest values: 
cable line: PS  = - 0.507 kV/MW; 

QS  = - 0.150 kV/MVAR; 
overhead line: PS  = - 0.390 kV/MW 

QS  = - 0.291 kV/MVAR 
Further, it can be noted that an uninsulated overhead 
line is more sensitive than an underground cable line 
with respect to reactive power injections, vice versa 
with respect to active power injections. For the 
overhead lines considered in the example we have 
r/x = 1.34. 
In conclusion, considering a conductor section of 
35mm2, passing from cable to overhead lines, PS  
reduces by about 20%, while QS  increases by 94%. 
Fig. 3 shows that cable lines are more sensitive to 
injections of active power than to injections of 
reactive power (r/x=1.38). On the other hand, 
overhead lines are more sensitive to injections of 
reactive power than to injections of active power 
(r/x=0.54). 
Further, cable lines are more sensitive than overhead 
lines with respect to active power injections, while 
overhead lines are more sensitive than cable lines 
with respect to reactive power injections.  
Note that a greater conductor section determines 
lower values of voltage sensitivities. 
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Fig. 2. Graphical representation of (SP)ij and (SQ)ij for a 20 kV network with underground cable lines or uninsulated 

overhead lines, conductor section 35mm2. 

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006      38



-0,300

-0,275

-0,250

-0,225

-0,200

-0,175

-0,150

-0,125

-0,100

-0,075

-0,050

-0,025

0,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lij [km]

(S
P)

ij [
kV

/M
W

], 
  (

S Q
) ij

 [k
V/

M
VA

R
]

  (SP)ij - Cable Line - 95 mmq - 20 kV

  (SQ)ij - Cable Line - 95 mmq - 20 kV

  (SP)ij - Uninsulated Overhead Line - 95 mmq - 20 kV

  (SQ)ij - Uninsulated Overhead Line - 95 mmq - 20 kV

 
Fig. 3. Graphical representation of (SP)ij and (SQ)ij for a 20 kV network with underground cable lines or uninsulated 

overhead lines, conductor section 95mm2. 

 

4 Conclusions 
The paper presented a simple analytical tool to 
quantify node voltage variations due to injections of 
active and reactive powers at one or more nodes of 
MV distribution networks. Sensitivity coefficients 
have been derived for node voltage with respect to 
variations of bus power. 
A graphical representation of the coefficients has 
been discussed through practical examples. Such a 
representation clearly highlights how node distance 
from the origin, section and type of conductor 
(overhead line or underground cable line) influence 
the network sensitivity. 
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