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Abstract: - Geo-referencing through rectification remains to be one of the challenging problems in remote 
sensing and various imagery applications such as image pose estimation, image to Object Registration and 3D 
map generation. Rigorous mathematical models with the aid of satellite ephemeris data can present the 
relationship between the image space and object space. With government funded satellites, access to 
calibration and ephemeris data allowed the development of these models. However, for commercial high-
resolution satellites, these data have been withheld from users, and therefore alternative empirical rectification 
models have been developed. In general, most of these models are based on the use of control points. 
Visibility and uniqueness of distinct control points in the input imagery limit use of this feature for robust 
Georeferencing procedure and provide a catalyst for the development of algorithms based on other image 
features. Recent advances in digital photogrammetry and Remote sensing mandate adopting higher-level 
primitives such as control linear features for replacing traditional control points. Linear features can be 
automatically extracted from the image space. On the other hand, object space control linear features can be 
obtained from an existing GIS layer containing 3D vector data such as road network, or from terrestrial Mobile 
Mapping Systems.  
In this paper, we present a new model named the Line Based Generic Model (LBGM), for Georeferencing of 
High Resolution Satellite imageries. The model has the flexibility to either solely use linear features or control 
point to define the image transformation parameters. As with other empirical models, the LBGM does not 
require any sensor calibration or satellite ephemeris data. Synthetic as well as real data have been used to 
check the validity and fidelity of the model, and experimental results proved the feasibility and robustness of 
LBGM approach, especially when compared to those obtained through traditional point based transformation 
models.  
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1   Introduction 
Point based math models have been, for several 
decades, used extensively in photogrammetry and 
remote sensing for sensor orientation, image 
rectification and terrain modeling. They are driven 
by connecting points in the image space and the 
corresponding points in the object space using 
rigorous or generic mathematical models. However, 
under many circumstances accurately identifying 
discrete conjugate points may not be possible. 
Unlike point features, which must be explicitly 
defined, linear features have the advantage that they 
can be implicitly defined by any segment along the 
line. In the era of digital imagery, linear features can 

be easily identified in the image by many automatic 
extraction tools and in object space, they can be 
obtained from an existing GIS database, hardcopy 
maps, and terrestrial mobile mapping systems (using 
for instance kinematics GPS techniques). Therefore, 
using linear features becomes an advantage, 
especially because they add more information, 
increase redundancy, and improve the geometric 
strength of adjustment [6]. 

Mulawa and Mikhail [12] present the concept of 
linear features in photogrammetric tasks in which 
linear features and photogrammetric observations 
are combined in the formulation. Kanok [8] and 
Mikhail and Kanok [10] have used an independent 

Proceedings of the 2nd WSEAS International Conference on Remote Sensing, Tenerife, Canary Islands, Spain, December 16-18, 2006          12



set of linear feature descriptors to present the 
relationship between image space and object space. 
The method is based on the observation that any ray 
from the perspective center passing through a point 
on the image line must intersect the object line. In 
their approach, the standard point-based collinearity 
equations were replaced by line-circle based ones. 
Instead of the regularly used two collinearity 
equations, a single equation is established to ensure 
the coplanarity of a unit vector defining the object 
space line, the vector from the perspective center to 
a point on the object line, and the vector from the 
perspective center to a point on the image line. 
Furthermore, coordinate transformations are 
implemented on the basis of linear features. In this 
case, feature descriptors are related instead of point 
coordinates. 

Nevertheless, in the absence of sensor calibration 
and satellite orbit information, there are several 
limitations in applying such techniques to High 
Resolution Satellite Imagery (HRSI). Some of these 
limitations are:  

a) All those presented are based on rigorous 
mathematical models which require sensor and 
system parameters that are withheld from the HRSI 
user community;  

b) When using linear features, rather than point 
features, conventional photogrammetric rules may 
not be appropriate [10];  

c) Most of these models are valid for the 
projective geometry imagery of a photograph which 
is not exactly the case for linear array sensor 
imagery;  

d) The models become quite complicated when 
modified for the geometry and time dependency 
characteristics of linear array scanners;  

e) Numerical problems could be encountered 
because of the initial approximation; and finally,  

f) Constraints improve accuracy of the 
adjustment and increase the redundancy in 
estimation but each constraint adds an additional 
parameter to the adjustment and multiple constraints 
may lead to over parameterization [6]. 

To date, there has been a substantial body of 
work dealing with non-rigorous mathematical 
models (such as rational functions, affine, 
polynomial, and DLT models) to circumvent the 
absence of satellite information and to rectify HRSI 
(see for example [2, 3]). These models are point 
based and have focused on two main aspects 
concerning accuracy: the accuracy attainable in 
image rectification, and the accuracy of DTM 
extraction by stereo spatial intersection. All reports 
demonstrate that the models described in them 
produce acceptable results.  

It is obvious that linear features can be used with 
rigorous mathematical models but “Can linear 
features be used with non-rigorous mathematical 
models in order to circumvent the absence of 
satellite information and maintain satisfactory 
results?” This research answers the question with the 
development of a generic sensor model named the 
Line Based Generic Model (LBGM). With the 
LBGM, most of the problems of using linear 
features with the present generation of rigorous 
models have been overcome. The model can either 
solely use linear features as well as use control 
points to define the image transformation 
parameters. The underlying principle of the model is 
that the relationship between line segments of 
straight lines in the image space and the object space 
can be expressed by a rational model relationship.  
 
 
2 The Mathematical Model 
Successful exploitation of linear features in 
georeferencing of HRSI requires consideration of 
the following two major aspects: 1- the 
mathematical representation of linear features in 
image and object space, and, 2- the mathematical 
modeling of the relationship between the two 
spaces.  
 
 
2.1 The Mathematical Representation of 

Linear Features 
There are different approaches for representing 
linear features in both image and object space. 
Straight lines and free form lines are examples of 
such representation. Various forms of equations can 
represent straight and free form lines in two and 
three-dimensional spaces. In this work, we briefly 
describe about some methods for line representation 
in 2D or 3D spaces. 
 
2.1.1   Line Representation in 2D Space 
The best known Representation methods for 
parametric line in 2D space are Cartesian-parametric 
and polar-parametric form.  
 
• Cartesian-Parametric Form of 2D Lines 
In this representation, a line can defined with a point 
laid on this line and the direction vector. This form 
of representation doesn’t provide a unique definition 
of line (Figure 1). 
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Fig, 1: 2D Line Representation in the form of Cartesian 

Parametric 
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In the above equations, t is the variable line 
parameter, (xsp, ysp) are the start point coordinates 
and (xep, yep) are the end point coordinates of line. 

 
• Polar-Parametric Form of 2D Lines 
In this representation, a line can defined with a 
length that is the minimum distance from line to the 
origin of coordinate system (ρ) and an angle 
between x-axis and line perpendicular from origin to 
the considerable line (θ).(Figure 2) 

 

 
Fig. 2: 2D Line Representation in the form of Polar Parametric 
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2.1.2   Line Representation in 3D Space 
The main methods for parametric line representation 
in 3D space, are Cartesian-parametric and polar-
parametric form. In this section have a quick look on 
these equation. 

 
• Cartesian-Parametric Form of 3D Lines 
In this representation, a line can defined with a point 
laid on this line and the direction vector in three 
dimension space. This form of representation 
doesn’t provide a unique definition of line (Figure 
3). 

 
Fig. 3: 3D Line Representation in the form of Cartesian 

Parametric 
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In the above equations, t is the variable line 

parameter, (XSP, YSP, ZSP) are the start point 
coordinates and (XEP, YEP, ZEP) are the end point 
coordinates of line. 

 
• Polar-four Parametric Form of 3D Lines 
In this representation, a line can defined with four 
parameters: Two angular parameters (ϕ, θ) that 
define the line orientation and two positional 
parameters (x0, y0) that are the position of the 
intersection of the line with a plane perpendicular to 
it. This provides a unique line representation (Figure 
1) [13].  

 

(2)

Fig. 4: 3D Line Representation in the form of Polar four 
Parametric 

 
Any point laid on the line can be expressed 

according to equation (4). 
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2.2 The Mathematical Representation of the 
Relationship Between the two Spaces 
Successful exploitation of the high accuracy 
potential of HRSI depends on the ability of the 
mathematical formulation of the relationship 
between image and object space. In this direction, 
the requirement for the development of an efficient 
2D/3D comprehensive sensor model formulation for 
various satellite images is a real challenge and has 
been investigated by different research groups [1, 
13, 14, 15]. Mathematical formulations presented in 
these research works, may be divided into two main 
groups of rigorous sensor models (RSMs) and 
generic sensor models (GSMs). 

RSMs reconstruct the spatial relations between 
remotely sensed imagery and the ground scene 
based on conventional collinearity equations. The 
method is highly suited to frame type sensors. Non-
linear effects caused by lens distortion, film 
shrinkage or atmospheric effects are dealt with 
either by additional parameters or by a priori 
refinement process. The RSM models have proved 
to be quite appropriate for the sensor modeling 
provided that the influential physical factors are 
available with the required accuracy, (see for 
example [1] ) .  

However, in practice, these models have several 
limitations and drawbacks [1, 9, 15].  GSMs are 
presented as a sophisticated solution for overcoming 
the RSMs limitations.  

GSMs use a set of general polynomials (or ratio 
of them) to establish the connection between images 
and object spaces. Formally, they equate x (row) and 
y (column) image coordinates to coefficients of 
some polynomials (often, first, second or third 
order) in X, Y, and Z object coordinates (typically 
latitude, longitude, and elevation): 
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where m1, m2, m3 are maximum term orders of X, 

Y and Z components respectively, p1,…,p4 are the 

transformation parameters and xn, yn, Xn, Yn and Zn 
are the normalized image and object coordinate 
given by the following equations: 
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where x0 and y0 are the offset values for the 

image coordinates; xs, ys are scale values; X0,Y0 and 
Z0 are the offset values for the object coordinates 
and Xs, Ys and Zs are their corresponding scale 
values. A detailed description on this normalization 
process can be found in [9].  
 
 
3 Proposed Method for the Line 

Based Generic Model (LBGM) 
Georeferencing process aims to register image to 
object to achieve improved accuracies and better 
inference about the environment. An effective image 
Georeferencing methodology must deal with an 
effective transformation function that 
mathematically describes the mapping function 
between the images and object.  

In this paper we use rational function for 
establish the relation between images and object 
space. The dominator for rational function in x and y 
component are equal. So we have these equations: 
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The next step is mathematically describes 

constraints for ensuring the correspondence of 
conjugate primitives. As mentioned earlier, the 
registration primitives, straight lines, will be 
represented by their end points, which need not be 
conjugate.  

After applying the transformation function on the 
line segment in the input image (AB), Equation (8) 
mathematically describes the necessary constraint 
for one of the end points of the line segment (a or b) 
in the reference data (Figure 5). 

(7)

(8)

(5)

 

0)sin(y)cos(xF =−′+′= ρθθ  
 
where (ρ, θ) are the polar coordinates 

representing the line segment cd in the image, and 
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(x', y') are the transformed coordinates of point a in 
the object after applying the  transformation 
function. Another constraint of the form in equation 
(8) can be written for point b along the line segment 
in the object (Figure 5).  

 
Fig. 5: Similarity constraints using straight-line segments. 
 

 
 

3.1 Proposed LBGM Strategy 
The lines lsp-ep and LSP-EP are used for displaying 
conjugate lines in image and object space 
respectively (Figure 6). These two lines can be 
defined by any two points along the line segment in 
image and object space. Suppose that point sp= (xsp, 
ysp) and  ep=(xep, yep) are two points on the lsp-ep in 
image space and  SP= (XSP, YSP, ZSP) and  EP=(XEP, 
YEP, ZEP) are two points on the LSP-EP in object space.  
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Fig. 6: LIDAR data and corresponding aerial image 
 

It is worth mentioning that points sp, ep and SP, 
EP in image and object spaces are not conjugate 
points, but the lines they lie on are conjugate lines. 
So we have these equations: 
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For be able to solve orientation problem, must be 

establish equation in above equations. For overcome 
to this tree strategies will be considered. 
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First case says that using line equation in image 

and object spaces. This cause singularity in normal 
matrix, because many points on corresponding lines 
in two spaces will be true in the equations. So this 
case can't solve the line based orientation problem. 
The second case suggests selecting a point on image 
line and using line representation in object space. In 
this case solving the orientation problem will be 
very difficult or nearly impossible. Because of the 
equations versus unknowns will be nonlinear and 
need to initial values for unknowns. The rational 
coefficients has no geometric interpretation so the 
estimation of initial values for these parameter is 
difficult and if these initial values don't near to real 
values may cause normal equations don't 
convergence. So we use third case as an optimum 
solution.  

 
 

3.2 Proposed Mathematical Model 
As mentioned before, final mathematical model 

will be in below form: 

⇒=−+= 0sin
)Z,Y,X(0P
)Z,Y,X(3P

cos
)Z,Y,X(0P
)Z,Y,X(1P

F ρθθ  
 

0)Z,Y,X(0Psin)Z,Y,X(3Pcos)Z,Y,X(1PF =⋅−+= ρθθ

     For each line in image two line parameters (ρ, θ) 
are known. This can be calculated by using Hough 
transform or by consider at least 2 points of line and 
fit polar-parametric models to it. The object 
coordinate of any arbitrary point on the 3D line can 
be considered and used as (X, Y, Z). So in the 
equations (13) the rational coefficients are as 
unknowns. Each point laid on the line provides one 
equation. On each line the maximum points that can 
be used are equal two. This equation is linearized 
versus to unknown. So it can be solved easily. 
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4 Experimental Results 

The potential of the proposed method for the line 
based generic model are evaluated through 
comprehensive experimental tests conducted on a 
wide variety of satellite imageries. In this paper the 
tests are conducted on Geo panchromatic IKONOS 
image with ground resolution of about 1 meter, 
which lies within the category of pushbroom type 
imageries with flexible structure. The test image was 
taken over the city of Hamadan, Iran on 10th of 
October, 2004. The relief variation in the area is in 
the range of 1700m to 2050m above sea level 
(ASL). To match with the resolution and accuracy of 
the image, the ground control points (GCPs), ground 
control   lines   (GCLs)    and   check    points    were  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

extracted from 1:1000 scale maps. The expected 
control features accuracy is about ±30 centimeters 
according to the common mapping standards. Figure 
7 shows the IKONOS image, the distribution of the 
check points and 3D view of the area generated from 
the corresponding digital map data-set.  

 
 

4.1 Evaluation Strategy 
To evaluate the optimization capability of our 

proposed approach, the following strategy is 
adopted. The line based generic modeling of the 
satellite imageries, were implemented; the 
transformation coefficients were calculated, using 
the already measured values of the GCPs, GCLs and 

A B 
 

Fig. 7: (A) IKONOS Geo panchromatic image used for the evaluation of the proposed LBGM,  
(B) the corresponding 3D view of the area. 

A B 
 

Figure 8. Residual vectors in image space, (A) using LBGM and (B) Point based method 
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incorporated into their respective mathematical 
models. The corresponding image coordinates of 
check points, control points in point based approach 
and points laid on the lines were computed with 
back projection, according to the mathematical 
models. The residual values between the measured 
image coordinates of the check points and their 
respective computed values in image space were 
then determined. The number of the measured GCPs 
and GCLs in the way selected that degree of 
freedom in orientation problem using points and 
using lines will be the same. The following sections 
report the results of the tests. 

 
 

4.2 Performance Evaluation 
In this section, the RMSE error on check points, 

and control points in image space calculated (Table 
1). Also the residual vectors for each point will be 
displayed. In figures 8 the left part belongs to 
transformation parameters using LBGM and right 
part belong to transformation parameters using point 
based Method. The red points are check and blue 
points are showed control points and the points that 
laid on the lines (in line based approach). 

 
Table 1: RMSE in image space in mm unit 

 

RMSE  of Proposed 
 LBGM 

RMSE  of Point Based 
Model  

x y x,y x y x,y 
Control 
Point 0.150 0.180 0.234 0.209 0.223 0.306 

Check 
Point 0.648 0.410 0.767 0.329 0.328 0.464 

 
 

5 Conclusion and Future Work 
The Feature Based Transformation Model is 

proposed for the georeferencing of high-resolution 
satellite imagery. This is an attempt to establish a 
new model, which can deal with linear features 
and/or linear features with a number of Point 
features. In this model, most of the problems 
encountered in previous models using linear features 
have been overcome. In addition, sensor calibration 
and satellite orbit information are not required.  

Experiments with synthetic and real data have 
been conducted and the results prove the 
applicability of the new model for image 
rectification. It is a very simple model which is time 
independent, can be applied to images from any 
linear array sensor, does not require any information 
about sensor or any initial approximation values. 
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