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Abstract: - In this paper we calculate the velocity field and distribution of stream function for ideal 
incompressible fluid, induced by a different system of vortex threads in a finite cylinder, in a finite frustum of 
the cone and in a channel. An original method was used to calculate the components of the velocity vectors. 
Such a procedure allows us to calculate the velocity fields inside the domain depending on the arrangement, on 
the intensity and on the radius of circular vortex lines. In this paper we have developed the first mathematical 
model for the process in the element of Hurricane Energy Transformer. This element is central figure in so 
called RKA (ReaktionsKraftAnlage) used on the cars’ roof. 
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1   Introduction 
In new technological applications it is important to 
use vortex distributions in area for obtaining large 
values of velocity. The effective use of vortex 
energy in production of strong velocity fields by 
different device is one of the modern areas of 
applications, developed during the last decade. Such 
processes are ecologically clean; there is no 
environment pollution. Although, on the other hand 
the aspect of energy is very important: the 
transformation process should be organized in such 
way that vortex energy is effectively transformed 
into heat or mechanical energy. In our previous 
papers [1]-[3] we have mathematically modeled the 
process how to transform the alternating electrical 
current into heat energy.  
The goal of this paper is to develop the mathematical 
models for new type of ecologically clean and 
energetically effective devices [4]-[6]. Such type of 
devices firstly was developed by I. Rechenberg [9]. 
Now the continuator of the work is one of authors J. 
Schatz. The devices of such type can be considered 
as the energy source of the new generation. The 
practical aim of our investigation is to try to 
understand the process in the element of Hurricane 
Energy Transformer [4]. This element is central 
figure in so called RKA (ReaktionsKraftAnlage) 
used on the cars’ roof for substantial reducing the 
airs’ drag.  
 

 

2 General Mathematical Formulation 

of the Problem  
 

2.1 Description of Geometry  
We will investigate the flow of incompressible fluid 
in finite circular frustum of cone 

, ( ) {( , , ) :r z r zε ϕΩ = 0 ,r a zε< < − 0 ,z Z< <  

0 2 ( 1)}Mϕ π< < + , with the parameter ε  under the 
condition:0 .Z aε≤ <  The cone transforms to 
circular cylinder with the radius a  for 0ε = . 

Parameter M gives the number of circulation 

periods. 
We will start with some geometrical descriptions of 
placement of the vortexes. We will consider the 

situation, when N discrete circular vortexes iL , 

where {( , ) : , }, 1,i i iL r z r a z z i N= = = = with 

intensity 
2

i

m

s

 
Γ  

 
and radii ( )ia m are placed in the 

cylinder. The system of circular vortexes creates the 

radial rv and axial zv components of the velocity 

field in ideal incompressible liquid. 
Similarly can be considered the system of N  

discrete spiral vortex threads ( 1,i N= ) 

{( , , ) : , , }iS r z r a t z a t t iϕ ε τ ϕ δ= = − = = + with 
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parameters
2
,

2

Z

N aM

π
δ τ

π
= = , [0,2 ].t Mπ∈  The 

argument ϕ  fulfills the following enclosure: 

2
,2 ( 1) .M

N

π
ϕ π ∈ +  

 Parameterτ gives the rise 

(step) of the vortex threads. The system of vortex 

threads creates the radial ,rv axial zv and 

azimuthal vϕ components of the velocity field in 

ideal incompressible liquid. 
Unlike our previous papers [5], [6] here we 
additionally consider the chain of linear vortexes 
lines in the plane channel 

,x yΩ = {( , ) : [0, ], [0, 2],x y x L y∈ ∈ }z R∈ . The 

vortices chain creates the ,x yv v components of the 

velocity field. 
The main goal of this work is to analyze how 
different displacements of the vortices influence the 
maximal value on the velocity field.  
 
2.2 Mathematical Statement of the Problem 
The vortex motion of ideal incompressible fluid will 
be determined from the equations for the vector 

potential A  [5]-[8] 

0,

.

div v

rot v

=


= Ω
                                                          (1) 

in following form: 

A∆ = −Ω .                                                            (2) 
Here 

v rot A=                                                                (3) 

and ,v Ω  are the vectors of velocity and vortex 

fields and ∆  is the Laplace operator. 
 
 

3 The Description of the Problem 
It is well known that if we replace the velocity 

vector v  with the magnet field induction vector B  

and the vortex vector Ω  with the electrical current 
vector j  then the system of equations (1) is identical 

with steady-state Maxwell’s equations. Here we will 
apply our mathematical investigations to the 
vortexes influence on the distribution of velocity 
field.  
  
3.1 Solution for the Frustum of the Cone 
Applying the Biot-Savart law [7], [8] we receive the 
following form of representation for the vector 

potential created by the vortex thread i iW S=  or 

circular vortex i iW L= : 

( )
4 ( )

i

i
i

iW

dl
A P

R NPπ
Γ

= ∫ .                                        (4) 

Here dl is an element of the curve iW , 

( , , )P P x y z= ( ( , , ) iN N Wξ η ς= ∈ ) is the fixed 

point (the integration point) in the fluid and 

2 2 2

( )

( ) ( ) ( ) .

i iR NP R

x y zξ η ς

= =

− + − + −
                           (5) 

For the spiral vortex i iW S=  we have expressions: 

* *( ) cos( ), ( ) sin( ),a t t i a t t iξ δ η δ= + = +  

btς = .                                                                  (6) 

Here *( ) , , [0,2 ]a t a t b a t Mε τ π= − = ∈ .  

This gives following expressions for the components 
of vector potential: 

, , ,, ,
4 4 4

i i i

i i i
x i y i z i

i i iS S S

d d d
A A A

R R R

ξ η ς
π π π

Γ Γ Γ
= = =∫ ∫ ∫ . 

Therefore finally [5]   
2

*
,

0

( )sin( ) cos( )

4

M

i
x i

i

a t t i t i
A dt

R

π δ ε δ
π

Γ + + +
= − ∫ , 

2

*
,

0

( ) cos( ) sin( )

4

M

i
y i

i

a t t i t i
A dt

R

π δ ε δ
π

Γ + − +
= ∫ , 

2

,

04

M

i
z i

i

b dt
A

R

π

π
Γ

= ∫ . 

In accordance with formulae (3) we have following 
expressions for the components of velocity field: 

( )

, ,
,

,
, ,

, ,
,

 ,

1 1
,

.

i z i

r i

r i

z i i

r i z i

i

A A
v

z r

A
v rA

r r r

A A
v

z r

ϕ

ϕ

ϕ

ϕ

ϕ

∂ ∂
= − + ∂ ∂

 ∂∂
= −

∂ ∂
 ∂ ∂

= −
∂ ∂

                               (7)   

It gives following expressions for last two 
components of vector potential: 

2

*
,

0

( )sin( ( )) cos( ( ))

4

M

i
r i

i

a t t t
A dt

R

π ψ ε ψ
π

Γ −
= ∫ , 

2

*
,

0

( ) cos( ( )) sin( ( ))

4

M

i
i

i

a t t t
A dt

R

π

ϕ

ψ ε ψ
π

Γ +
= ∫ . 

Here was used short notation ( )t t iψ ϕ δ= − − .  
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This gives following representations for the 
components of the velocity field: 

*

2

, *
0

3

cos( ( ))

( )sin( ( ))

[( )( ( )
4

sin( ( ))) ] ,

M
i

r i

i

t

a t t

v z bt a t

dtt b
R

π
ψ

ψ

π

ε ψ

Γ
= −

+ −

∫                (8) 

2

, * *
0

3

[ ( )( ( )
4

cos( ( ))) sin( ( ))] ,

M
i

z i

i

v a t a t

dtr t r t
R

π

π

ψ ε ψ

Γ
= −

−

∫                        (9) 

                                  
2

, *
0

* 3
.

[ ( ( )cos( ( )))
4

( )( ( )sin( ( )) cos( ( )))]

M
i

i

i

v b r a t t

dtz bt a t t t
R

π

ϕ ψπ

ψ ε ψ

Γ
= − −

− +

∫      (10) 

The ,z xv on the axis is as follows [5], [6]: 

2 2

, 3
2

(0, ) .
4 ( )

a

i
z i

a M

q dq
v z

R qπ ε

ε
π −

Γ
= ∫                             

Here  
2 2 2

1 1 1 1 0

2 2 2
1 0 1 0

( ) , ,

2 , , .

R q a b q c q a b z

z
b b z c b z a

b

ε
ε

= + + =

= − = + = −
 

This integral can be written in closed form: 

2 2 1 1 2 1 1
,

1 1 2 1

2
1 2 1 2 1

1 1 1 1

2 2
(0, ) [

4 ( ) ( )

( ) / 2
ln ,

( ) / 2

i
z i

d a a b d a a b
v z

c d R a d R a

c R a c a b

c c R a c a b

π

ε

Γ − −
= − −

+ +

+ +

 (11) 

2 2 2 2
2 1 0 2 12 , 4 , ( ).a a M d b z d d bπε ε= − = = −  

 

3.2 Solution for the Cylinder 
Now we will concentrate our attention on the case of 

the circular cylinder ( 0ε = ) [5].  
For the cylindrical coordinates we have: 

cos , sin , ix r y r z zϕ ϕ= = = .                          (12) 

It is easy to proof that for the cylinder with the 
radius a  all components of velocity are even 

functions according to middle point 
2

Z
z =  of the 

cylinder, i.e.: 

( , , ) ( , , )
2 2i i

Z Z
v r z v r zϕ ϕ− = + .                       (13) 

The representations for the components of vector 
potential in case of cylinder take a simplified form: 

2

,

0

sin( )

4

M

i
x i

i

a t i
A dt

R

π δ
π

Γ +
= − ∫ , 

2

,

0

cos( )

4

M

i
y i

i

a t i
A dt

R

π δ
π

Γ +
= ∫ , 

2

,

04

M

i
z i

i

b dt
A

R

π

π
Γ

= ∫ . 

Respectively, both components of the vector 
potential in cylindrical coordinates simplify: 

2

,
0

,
sin( ( ))

4

M
i

r i
i

a t
A dt

R

π ψ
π

Γ
= ∫  

2

,

0

cos( ( ))

4

M

i
i

i

a t
A dt

R

π

ϕ

ψ
π

Γ
= ∫ . 

The components of the velocity field now look as 
follows: 

,

2

3
0

( , , )
4

[( )cos( ( )) sin( ( ))] ,

i
r i

M

i

r z
a

v

dtz bt t b t
R

π

ϕ π

ψ ψ

×
Γ

=

− −∫

       (14) 

,

2

3
0

( , , )
4

[ cos( ( ))] ,

i
z i

M

i

r z
a

v

dta r t
R

π

ϕ π

ψ

×
Γ

=

−∫

                                 (15) 

2

,
0

3
.

( , , ) [ ( cos( ( ))
4

( )sin( ( ))]

M
i

i

i

r zv b r a t

dta z bt t
R

π

ϕ ϕ ψπ

ψ

Γ
= −

− −

∫            (16)    

On the axis of the cylinder, the second component 
(15) of velocity reduced to simple expression in 
closed form [5], [6]: 

, 2 2 2 2
(0, )

2 ( )

i
z i

M z Z z
v z

Z a z a Z z

 Γ −
= + 

 + + −  
.  

This function takes its maximal value in middle 

point of cylinder axis / 2z Z= [6]: 

, 2
(0, / 2)

2 1 ( /(2 ))

i
z i

M
v Z

a Z a

Γ
=

+
.                     (17) 

We obtain the minimal values of the z component of 
the velocity in two end points of cylinder axis: 

, , 2
(0,0) (0, )

2 1 ( / )

i
z i z i

M
v v Z

a Z a

Γ
= =

+
.           (18) 
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The integral averaged value of the axial velocity 
component is equal to: 

, 2

2

2 1 1 ( / )

i
av i

M
v

a Z a

Γ
=

+ +
.                            (19) 

The whole solution can be written now as the sum of 
separate vortexes: 

,
1

,
1

,
1

,
1

( , , ) ( , , ),

( , , ) ( , , ),

( , , ) ( , , ),

( , , ) ( , , ).

N

r r i

i

N

z z i

i

N

i

i

N

i

i

v r z v r z

v r z v r z

v r z v r z

A r z A r z

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

=

=

=

=

=

=

=

=

∑

∑

∑

∑

                           (20) 

In general case we calculated all needed integrals 
with the trapezoid formulas. 
In case of circular vortex we have following 
expressions instead of (6): 

cos , sin , .i i ia a zξ α η α ς= = =                         

Therefore 

, 0.z iA =                                                                (21) 

The circular vortex originate axially-symmetric 

conditions; at 0ϕ =  we have 

, 0.x iA =                                                                (22) 

Then it follows that 

, , ( , )
4
i i

y i i i i

a
A A A z r Iϕ π

Γ
= = = , 

where 
2

2 2 2
0

cos

( ) 2 cos
i

i i i

d
I

z z a r a r

π α α

α
=

− + + −
∫ .         (23) 

We have: 
/ 2 2

2 2 2 2
0

(1 2sin )

( ) ( ) 1 sin

2 2 2
( ) ( ) .

i

i i i

i i i

i ii

t dt
I

z z r a k t

k K k E k
k kra

π −
= =

− + + −

  
− −  

  

∫
 

Here 

( ) / 2t α π= − , 

2 /i ik ar c= ,                                                    (24) 

2 2( ) ( )i i ic z z r a= − + + .                                (25) 

Further ( )K k and ( )E k are the total elliptical 

integral of first, respectively second kind: 

/ 2

2 2
0

/ 2
2 2

0

( ) ,
1 sin

( ) 1 sin .

dt
K k

k t

E k k tdt

π

π

=
−

= −

∫

∫
 

Therefore the azimuthal component of vector 

potential  iA  induced by the circular vortex iL  is: 

( , ) ( )
2

i i
i i

a
A r z F k

rπ
Γ

= .                                   (26) 

Here 

2 2
( ) ( ) ( ) .i i i i

i i

F k k K k E k
k k

  
= − −  

  
              (27) 

The two non-zero components of the velocity field 
for the circular vortex according the formulas (7) 
reduce to expressions: 

, ,ir i

A
v

z

∂
= −

∂
( ),

1
z i iv rA

r r

∂
=

∂
.                           (28) 

Finally we have: 

,

2 2 2

2 2

( , )
2

( )
( ) ( ) ,

( ) ( )

i i
r i

i

i i
i i

i i

z z
v r z

r c

a r z z
E k K k

a r z z

π
Γ −

= ×

 + + −
− − + − 

               (29) 

,

2 2 2

2 2

( , )
2

( )
( ) ( ) .

( ) ( )

i
z i

i

i i
i i

i i

v r z
c

a r z z
K k E k

a r z z

π
Γ

= ×

 − − −
− − + − 

               (30) 

We have on the axis of the cylinder: 
2

, 3/ 22 2
(0, ) .

2 ( )

i i
z i

i i

a
v z

a z z

Γ
=

 + − 

  

This component of the velocity has the maximal 

value by ,i iz z a a= =  on the axis and it is as 

follows: 

 , (0, ) .
2

i
z i iv z

a

Γ
=   

In the middle point of the z axis we obtain the value 

(for ia a= ): 

, 3/ 22 2
(0, / 2) .

1 ( 2 ) /

i
z i

i

v Z
D Z z D

Γ
=

 + − 

      

Here 2D a= is the diameter of the cylinder. For 

the integral averaged value of the axial velocity 
component we have following formula: 
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,

2 2

( ) / /
.

1 (( ) / ) 1 ( / )

i
av i

i i

i i

a
v

DZ

Z z a z a

Z z a z a

Γ
= ×

 −
 +
 + − + 

             (31) 

From here we have in the middle point / 2iz Z= : 

, 2

1
.

1 ( / )

i
av iv

D Z D

Γ
=

+
 

The total velocity field of all the circular vortexes 

and the vector potential Aϕ  we have as the sum: 

,
1

,
1

,
1

( , ) ( , ),

( , ) ( , ),

( , ) ( , ).

N

r r i

i

N

z z i

i

N

i

i

v r z v r z

v r z v r z

A r z A r zϕ ϕ

=

=

=

=

=

=

∑

∑

∑

    

The hydrodynamic stream function ( , )r zψ ψ= is 

given by relations: 

1 1
,r zv v

r z r r

ψ ψ∂ ∂
= − =

∂ ∂
. 

Then we have from (28): 

( , ) ( , )r z rA r zϕψ = .                                            (32) 

Important attribute of the process is the amount Q  

of substance which flows through the cross section 

0 0[ ,0 ]z z r a= ≤ ≤  of the cylinder, which is given 

by the integral: 
02

0 0 0

0 0

( , ) ( , )
a

zQ a z d v r z rdr

π

ϕ= ∫ ∫ . 

It is very easy to calculate the quantity: 

0 0 0 0 0 0 0( , ) 2 ( , ) 2 ( , )Q a z a A a z a zϕπ πψ= = .     (33) 

Then the amount TQ of substance which flows 

trough the whole cylindrical domain is equal to: 

0 0 0

0 0

( ) ( , ) 2 ( , )
Z Z

TQ a Q a z dz a z dzπ ψ= =∫ ∫ .         (34) 

Proposed method allows calculating the velocity 
field for arbitrary number and location of circular 
vortexes or vortex threads in a finite cylinder. This 
approach is different from the usual methods [10]. 
 

3.3 Solution for the Channel 
For this geometry we assume the symmetry 
condition in the middle of the channel: 

1

0x

y

v

x =

∂
=

∂
 

and formulate the slip-conditions for the velocity 

vectors on the line 0y = : 

0 0
0.x yy y

v v
= =

= =  

The flow in the channel is given by prescribed fixed 
amount of flow trough cross section of the channel: 

1

0
0

x x
Q v dy

=
= ∫ .    (35) 

We note that for L = ∞ we have Poiseuille flow 

with 
2( ) 3 ( 0.5 ), 0.x yv u y Q y y v= = − =                    (36) 

On the wall 0y =  of the channel we placed linear 

vortexes chain with the axis orthogonal to the 

( , )x y plane. One linear vortex line in the point with 

coordinates ( , )k kx y creates following velocity 

field: 

, ,2 2

2 2 2

, ,
2 2

( ) ( ) .

k k k k
x k y k

k k

y y x x
v v

R R

R x x y y

π π
Γ − Γ −

= =

= − + −
                  (37) 

Because of infinity of velocity in the centre of point-
wise vortex we consider the vortex line as circle 
with radii a . In such situation the formulae (37) are 

valid for ,R a≥ but for R a< we must use 

following expressions: 

, ,2 2
, .

2 2
k k k k

x k y k

y y x x
v v

a aπ π
Γ − Γ −

= =                   (38) 

The total velocity field of all the linear vortex lines 
we have as the sum: 

,
1

,
1

( , ) ( , ),

( , ) ( , ).

N

x x k

k

N

y y k

k

v x y v x y

v r z v x y

=

=

=

=

∑

∑
    

 
 

3   Some Results of the Computations 
We investigate the influence of 6 circular vortex 
lines in finite cylinder which are arranged in the 
axial direction at the fixed points 

0.2 , , 1,i i iz i r a i N= = = . In fig. 1 circular vortices 

are placed in points 1ia a= = ; in fig. 2 – in 

points i ia c a= , [0.75,0.8,0.85,0.9,0.95,1.0]ic = .  
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We scaled all lengths to inlet radius of the tube 

0 ,r a= the axial and the radial components of 

velocity were scaled to 0
0

02
v

rπ
Γ

= . The results of 

numerical experiments are given for dimensionless 
values 

0
0 0 0 0

0 0

, , .
2

T
t

Q
Q A r A

r
ψ

ψ π
Γ

= = =  

 

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.286

0.571
0.857

1.14
1.43 1.71

2
2.29

2.57
2.86

Stream funct.ψ and velocity field:[1 1 1 1 1 1]

z

r

 
Figure 1. Distribution of the stream function and 

velocity; ,max 16.21, 25.12.z tv Q= =    

 

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.32

0.641
0.961

1.28
1.6
1.92
2.24
2.56

2.88
3.2

Stream function and velocity field:[1 1 1 1 1 1]

z

r

 
Figure 2. Distribution of the stream function and 

velocity; ,max 17.98, 27.96.z tv Q= =   

 
 

4   Conclusion 
Velocity fields of ideal incompressible fluid 
influenced by vortexes in a finite cylinder, finite 
cone and channel are investigated. The maximal 
value of the velocity induced by the spiral vortexes 
is in the middle of the cylinder. The behavior of 
circular vortexes in the ideal incompressible flow 
depends on the number, location and on the 

orientation of the vortexes. This approach can be 
generalized for the vortex threads on the surface of 
finite frustum of the cone.  
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