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Abstract: System verification plays an important role in large scale and complex systems. However, it is very
difficult for designers other than the specialist who is well versed in Temporal Logic to specify behaviors of the
system. This article considers the case where designers of systems can specify temporal formulas easily in system
verification. We propose a method by which temporal formulas can be obtained inductively for specifications
in system verification. System designers can easily derive complex temporal formulas by using the specification
method.
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1 Introduction
Today, hardware and software systems are widely
used in applied field where no failure is permit-
ted: electronic commerce, telephone switched net-
work, and medical equipment, etc. Industrial designs
are becoming more and more complex as technol-
ogy advances and demand for higher performance in-
creases. The validity of a design accompanies check-
ing whether the physical design satisfies its specifica-
tion. In traditional design flow, validation is accom-
plished through simulation and testing. Some errors
inside a design may exhibit nondeterministic behav-
iors, and therefore, will not be reliably repeatable.
This makes testing and debugging using simulation
difficult. Also, exhaustive testing for nontrivial de-
signs is generally infeasible, therefore, testing pro-
vides at best only a probabilistic assurance. Formal
verification, in contrast to testing, uses rigorous math-
ematical reasoning to show that a design meets all or
parts of its specification. For that reason, formal veri-
fication is on the critical path for today’s IC designers,
no matter what type of systems they are building[1].

Formal verification has problems of its own class
too. The major problem with automatic formal ver-
ification is that a large amount of memory and time
is often required, because the underlying algorithm in
these methods usually involves systematic examina-
tion of all reachable states of the system to be verified.
As the number of reachable states increases rapidly
with the size of the system, the basic algorithm by it-
self becomes impractical: the number of states for the

system is often too large to check exhaustively within
the limited time and memory that is available. This
phenomenon is known as the state space explosion
problem[2, 3]. In design of complex and large scale
systems, system verification has played an important
role. System verification ascertains whether designed
systems can be executed or specified. Various formal
methods for verification have been studied[1, 2, 4].
However, specification methods for the verification
have not been studied so far very much.

This article is to focus on specification process of
model checking in system verification shown in Fig.1,
and to propose a new method which can obtain tempo-
ral formulas inductively from modeling systems. Sys-
tem designers can easily derive complex temporal for-
mulas by using the method.

2 Model Checking
The model checking[1, 2, 4] is easy to describe. Given
a Kripke structure M = ( S , R , L ) that represents
a finite-state concurrent system and a temporal logic
formula f expressing some desired specification, find
the set of all states in S that satisfy f :

{ s ∈ S | M , s |= f }.

An important issue in specifications complete-
ness. Model checking provides means for checking
that a model of the design satisfies a given specifi-
cation, but it is impossible to determine whether the
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Figure 1: The framework of proposed method.

given specification covers all the properties that the
system should satisfy.

• Reachability property states that some particular
situation can be reached.

• Safety property expresses that, under certain con-
ditions, nothing bad will happen.

• Liveness property express that, under certain
conditions, something good will eventually hap-
pen.

• Fairness property express that, under certain
conditions, something will (or will not) occur in-
finitely often.

In this article, behaviors of a system are specified by
temporal formulas in Computation Tree Logic.

2.1 Signal Transition Graph
In order to describe highly concurrent systems, graph-
based specification methods[5] have been widely
used. An Signal Transition Graph (STG)[6], a la-
beled interpreted Petri Net[7], has been considered as
a well-suited specification method to describe asyn-
chronous circuits.

Definition 1 (Petri Net (PN)). A Petri Net is a bi-
partite directed graph consisting of 4-tuple

∑
=

(P, T, F,m0), where

1. P is a finite set of places.

2. T is a finite set of transitions, satisfying P ∩ T =
φ and P ∪ T = φ .

3. F is a flow relation F ⊆ (P × T ) ∪ (T × P ),
specifies binary relation between transitions and
places.

4. m0 is the initial marking of the PN.

When transitions are interpreted as rising and
falling transitions of signals of a control circuit, an
STG is one interpretation of a PN.

Definition 2 (Signal Transition Graph (STG)). Let
J be a set of signals of a network, A Signal Transition
Graph defined on J is a Petri Net

∑
J

= 〈 P, T, F,M0

〉 with T : J → { + , - } .

Each transition of the STG is interpreted as a ris-
ing transition or a falling transition of a signal.

Consider an arbiter module shown in Fig.2. An
STG for the arbiter module is shown in Fig.3, where
’+’ mean a rising edge and ’-’ means a falling edge of
a certain signal, respectively. This example uses two
signals u0 and u1. Black circle on a transition edge
indicates a token. A transition is enabled when all
input places have at least one token. When an enabled
transition fires, it removes one token from each input
place and adds one token to each output place.

arbiter
module

user0 user1

u0in

u0out

u1out

u1in

Figure 2: An arbiter handshake module.

u0in+ u0out+

u1out+ u1in+

u0in- u0out-

u1out- u1in-

Figure 3: A signal transition graph for Fig.2

2.2 Temporal Logic
Temporal logic[1, 2, 4, 8] is a formalism for describ-
ing sequences of transitions between states in a reac-
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tive system. In the temporal logics that we will con-
sider, time is not mentioned explicitly; instead, a for-
mula might specify that eventually some designated
state is reached, or that an error state is never entered.
Properties like eventually or never are specified using
special temporal operators. These operators can also
be combined with boolean connectives or nested ar-
bitrarily. Temporal logics differ in the operators that
they provide and the semantics of those operators. Its
operators mimic linguistic constructions (the adverbs
”always” , ”until” , the tenses of verbs, etc.) with
the result that natural language statements and their
temporal logic formalization are fairly close. Finally,
temporal logic comes with a formal semantics, an in-
dispensable specification language tool.

2.2.1 Computation Tree Logic(CTL)
Here we give descriptions of CTL[1, 2, 4, 8]. CTL
is a sort of temporal logic, which has the following
formulas:

• Gq : means that q always holds for all successor
states on a certain path.

• Fq : represents that q must be sometimes true
for only one successor state of the path, and is
similar to the formula which expresses future in
linear temporal logic.

• pUq : is that p must be true on the path states,
beginning at the current state, until q becomes
true.

• Aq : is that q is true on all possible paths, from
the current state.

• Eq : is that q is true at least on one path.

The correctness of properties to be verified is usu-
ally specified in CTL. CTL, branching-time temporal
logic, is extending propositional logic with temporal
operators that express how propositions change their
truth values over time. Here we use temporal opera-
tors: Operators G, F, and X meaning globally, some-
time in the future, and next time, respectively. In CTL,
these operators must be preceded by a path quantifier
which is either A (for all computation paths) or E (for
some computation path). We consider operators AG,
AF, and AX: The formula AG p holds in state s if p
holds in all states along all computation paths start-
ing from s, while the formula AF p holds in state s
if p holds in some state along all computation paths
starting from s. The formula AX p holds in state s if
p holds in all the states that can be reached from s in
exactly one step.

Many of the methods to avoid the state explosion
problem rely on compositional reasoning or abstrac-
tion. The logic that is typically used in these cases is
more restricted and allows only universal path quanti-
fiers.

3 Proposed Method
3.1 Strong/Weak Temporal Order Relation
In verifying behaviors of a system, checking all sig-
nal events is inefficient. Reducing signal events to be
checked is necessary for specifying behaviors of the
system. Here, We consider a system which has 3-
inputs (a , b , c) and 2-outputs (x , y). Suppose that
behaviors of the system occur as a → x → b → c →
y → a , repeatedly. All relations of the signal events
can be indicated as follows:

{(a , x) , (a , y) , (x , b) , (b , c) , (b , y) , (c , y)},

where (a , x) indicates that output x occur after input
a . Although output y is not an immediate successor
of input a , (a, y) can be considered because output y
must occur after input a in the future. Definitions of
strong/weak temporal order relations are as follows:

Definition 3 (strong temporal order relation). A
strong temporal order relation is any inverse input-
output relation of event sequences.

Here, we focus on relation (x , b). We notice that (x
, b) indicates an inverse relation of input and output
events. However, it is not necessary that input b must
occur after output y in many cases excepting systems
of 1-input and 1-output. Thus such an inverse input-
output relation can be reduced by a strong temporal
order relation.

Definition 4 (weak temporal order relation). A
weak temporal order relation is any relation of input
signal events.

Further, we focus on relation (b , c). We notice that the
relation only indicates inputs. Output y is a successor
of inputs b and c by relations (b , y) and (c , y). On the
other hand, output y can occur by rendezvous of inputs
b and c. Output y can occur independently of relation
(b , c). Therefore, such a relation can be reduced by a
weak temporal order relation.

Thus, behaviors of the system can be specified by in-
troducing strong/weak temporal order relations as fol-
lows:
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{ (a , x) , (a , y) , (b , y) , (c , y) }

Its specification shows that output x can occur after
input a and output y can occur by rendezvous inputs
a, b, and c.

3.2 Procedure of Specification

STEP.1
Extracting all paths from branch expression.

STEP.2
Extracting input-output(IO) relations.

STEP.3
Introducing temporal operators to an IO relation.

STEP.4
Specifying all paths using temporal formulas.

STEP.5
Combining operator AX and AF.

Figure 4: Procedure of Specification.

In this section, we describe the procedure of the
proposed specification method shown in Fig.4. This
procedure corresponds to the part in the wavy arrow
line in Fig.1. The procedure is composed of five steps
shown in Fig.4. Here, we explain the procedure as
follows:

[STEP.1]
In this step, event sequences are extracted from branch
expression.

[STEP.2]
In this step, checked signal events can be reduced by
introducing strong/weak temporal order relations.

[STEP.3]
In each path, if IO relation shows that there is imme-
diate successor, specified as AX operator, otherwise
specified as AF operator.

[STEP.4]
In all paths, relations of the same temporal operator
and the same IO can be extracted. Otherwise only
the same IO relation can be extracted. Since AF ex-
presses ”sometime in the future for all paths,” the next
operator AX can be covered as AX ⊆ AF. Thus, the

extracted same IO relation can be gathered by AF.

[STEP.5]
In all paths, relations of the same output can be com-
bined.

Temporal formulas can be derived by repeating
the above-mentioned steps.

4 Specification Examples
We show specifications for the DME cells as is shown
in Fig.5. Temporal formulas are specified without our
proposed method as follows:

[Specification without the proposed method]

[DME1]
AG [ AF (u1.req+ ∧ d1.ack+ ∧ d4.req

−
, u1.ack

−
)

∨ AF (u1.req+ ∧ d4.req
−

, d1.req+)
∨ AX (u1.req+ , d4.ack

−
)

∨ AF (u1.req
−
∧ d1.ack

−
∧ d4.req+ , u1.ack+)

∨ AF (u1.req
−
∧ d4.req+ , d1.req

−
)

∨ AX (u1.req
−

, d4.ack+)

[DME2]
AG [ AF (u2.req+ ∧ d2.ack+ ∧ d1.req

−
, u2.ack

−
)

∨ AF (u2.req+ ∧ d1.req
−

, d2.req+)
∨ AX (u2.req+ , d1.ack

−
)

∨ AF (u2.req
−
∧ d2.ack

−
∧ d1.req+ , u2.ack+)

∨ AF (u2.req
−
∧ d1.req+ , d2.req

−
)

∨ AX (u2.req
−

, d1.ack+)

[DME3]
AG [ AF (u3.req+ ∧ d3.ack+ ∧ d2.req

−
, u3.ack

−
)

∨ AF (u3.req+ ∧ d2.req
−

, d3.req+)
∨ AX (u3.req+ , d2.ack

−
)

∨ AF (u3.req
−
∧ d3.ack

−
∧ d1.req+ , u3.ack+)

∨ AF (u3.req
−
∧ d2.req+ , d3.req

−
)

∨ AX (u3.req
−

, d2.ack+)

[DME4]
AG [ AF (u4.req+ ∧ d4.ack+ ∧ d3.req

−
, u4.ack

−
)

∨ AF (u4.req+ ∧ d3.req
−

, d4.req+)
∨ AX (u4.req+ , d3.ack

−
)

∨ AF (u4.req
−
∧ d4.ack

−
∧ d3.req+ , u4.ack+)

∨ AF (u4.req
−
∧ d3.req+ , d4.req

−
)

∨ AX (u4.req
−

, d3.ack+)

Moreover, we indicate temporal formulas with our
proposed method as follows:
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[Specification with the proposed method]

[DME1]
AG [ AF (u1.req+ ∧ d1.ack+ ∧ d4.req

−
, u1.ack+)

∨ AX (u1.req+ , d1.req+) ∨ AX (u1.req+ , d4.ack
−

)
∨ AF (d1.ack

−
∧ u1.req

−
∧ d4.req+ , d4.ack+)]

[DME2]
AG [ AF (u2.req+ ∧ d2.ack+ ∧ d1.req

−
, u2.ack+)

∨ AX (u2.req+ , d2.req+) ∨ AX (u2.req+ , d1.ack
−

)
∨ AF (d2.ack

−
∧ u2.req

−
∧ d1.req+ , d1.ack+)]

[DME3]
AG [ AF (u3.req+ ∧ d3.ack+ ∧ d2.req

−
, u3.ack+)

∨ AX (u3.req+ , d3.req+) ∨ AX (u3.req+ , d2.ack
−

)
∨ AF (d3.ack

−
∧ u3.req

−
∧ d2.req+ , d2.ack+)]

[DME4]
AG [ AF (u4.req+ ∧ d4.ack+ ∧ d3.req

−
, u4.ack+)

∨ AX (u4.req+ , d4.req+) ∨ AX (u4.req+ , d3.ack
−

)
∨ AF (d4.ack

−
∧ u4.req

−
∧ d3.req+ , d3.ack+)]

DME1User1 User3DME3

d1.req

d1.ack

d2.ackd2.req

u1.ack

u1.req

u2.req

u2.ack

DME2

DME4

User2

User4

u3.requ4.req

u3.acku4.ack

d3.req

d4.req

d3.ack

d4.ack

Figure 5: Chained DME modules[3].

5 Verification Results
We show some asynchronous bench marks in the ta-
ble. All these circuit verifications are performed on
an 3.2GHz Pentium Xeon processor under Linux with
1GB of available RAM. In this article, all circuits are
verified by Cadence SMV[10].

For each circuit, we report the number of boolean
variables necessary to represent the corresponding
model, OBDD nodes, and time required by the sys-
tems to analyze the model. Some circuits in the ta-
ble can be found in the distribution of SMV[11, 12].

For small circuits such as C-element4, p-queue and
pipeline4, time is not much different between the
two methods. On the other hand, as the circuits be-
come larger, the effect begins to appear in the re-
sults: It is remarkable especially for control modules.
Moreover, performance results of distributed mutual
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Figure 6: Verification performance of the DMEs:
OBDD nodes(upper), execution time(lower).

exclusion(DME)[4] circuit are shown in Fig.6, where
the number of cells refer to the number of DME mod-
ules shown in Fig.5. Executions of verification with-
out the method resulted in “disable” at the DME of
8-cells.

6 Conclusion
We proposed a method by which temporal formu-
las can be obtained inductively for specifications in
model checking. Users must generally know well
temporal specification because the specification might
be complex. Our proposed method can gain tempo-
ral formula specifications inductively. We aimed at
input-output order relations for systems, not consider-
ing output-input order relations. Furthermore, we de-
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Table 1: Verification results
with proposed method without proposed method

Circuit name OBDD nodes Reduce(%) Time(secs) Reduce(%) OBDD nodes Time(secs)
C-element4 1988 -1.5% 0.06 0.0% 2018 0.06
C-element16 242244 -0.1% 0.97 -1.0% 242462 0.98
p-queue 139530 -5.8% 0.82 -3.5% 148160 0.85
pipeline2 679 -23.5% 0.02 -60.0% 888 0.05
pipeline4 3272 -22.9% 0.06 -66.8% 4244 0.09
pipeline8 144431 -13.8% 0.79 -66.8% 167469 2.38
abp4 75661 -21.5% 0.43 -21.8% 96384 0.55
pci3p 447889 -21.5% 1.19 -66.5% 570388 3.55
pci 193576 -44.2% 385.57 -34.6% 346758 589.75

fined strong/weak temporal order relations in the pro-
cedure of specification. Weak temporal order relations
include orders of inputs implicitly. Strong temporal
order relations express inverse input-output order re-
lations. We showed that the verification tasks are re-
duced for OBDD nodes, and execution time with our
proposed inductive specification method. System de-
signers can easily lead complex temporal formulas by
using the method.

In this research work, the scale of circuits and sys-
tems used for the verification didn’t reach at practica-
ble levels. Then, it is assumed to be a research work
in the future to embed the specification into commer-
cial CAD tools, and will check structures of complex
systems with the relations under an embedded system.
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