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Abstract: Kernel methods like e.g. Support vector machines (SVM) and Relevance vector machines (RVM) are
widely used as data-mining tools. The concept of Bayesian learning exploited in RVM leads to Automatic relevance
determination (ARD) which provides sparsity in resulting decision rules. This concept also sets all regularization
coefficients without involving computationally expensive cross-validation methods. In this paper we suggest an
extension of Bayesian maximal evidence framework which allows to set kernel function most appropriate for the
particular task. We propose a local evidence estimation method which establishes a compromise between accuracy
and stability of algorithm. In the paper we first briefly describe maximal evidence principle, present model of
kernel algorithms as well as our approximations for evidence estimation, and then give results of experimental
evaluation. Both classification and regression cases are considered.
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1 Introduction
Support Vector Machines (SVM) [1] has proved to be
the state of the art technique for solving classification
and regression problems. However, successful appli-
cation of SVM needs choosing the particular kernel
function as well as regularization coefficient C (or its
analogue). Different values of C and forms of ker-
nel functions lead to different behaviour of SVM for
particular task.

Usually the parameters of kernel function and
coefficient C are defined using cross-validation pro-
cedure. This may be too computationally expen-
sive. Moreover the cross-validation estimates of per-
formance, although unbiased [2], may have large vari-
ance due to the limited size of learning sample.

Several methods for model selection in SVM and
SVM-like models were proposed, e.g. in [9, 10, 6, 7,
11, 8]. The popular way is application of Bayesian
learning framework and maximal evidence principle
[3]. Usually some probabilistic interpretation of SVM
is provided which is then used for adaptation of max-
imal evidence principle [11, 8]. However, such prob-
abilistic interpretation requires different approxima-
tions and changes in initial SVM training algorithm.
Here we consider an SVM-like algorithm which is
constructed directly from probabilistic model - Rel-
evance Vector Machines (RVM), proposed by Tip-
ping [4]. This approach doesn’t require setting of

coefficient C for restriction of weights’ values as
corresponding regularization coefficients are adjusted
automatically during training. However, the prob-
lem of kernel selection still remains. We focus on
the most popular RBF kernel functions K(x,z) =
exp

(
−‖x−z‖2

2σ2

)
and selection of parameter σ - width

of Gaussian. We show that application of Bayesian
framework for kernel selection requires extension of
algorithms model - inclusion of kernel centers. In-
tegration over posterior probability in the new model
becomes intractable and hence point estimate of pos-
terior probability is used. Laplace approximation for
evidence estimation requires maximization of poste-
rior probability as well as its Hessian computation.
However, in the new model too high dimension of op-
timization parameters space and the fact that posterior
probability is multi-modal function make the applica-
tion of Laplace approximation impossible. Instead of
this we propose a method of local evidence estima-
tion which leads to a compromise between stability
and training accuracy of algorithm.

The paper is organized as follows. Section 2
briefly summarizes ideas of Bayesian learning, max-
imal evidence principle and Relevance Vector Ma-
chines. Section 3 presents extended family of algo-
rithms and our kernel selection procedure. In section
4 experimental results on toy problems and real data
are provided, while the last section gives conclusion
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and discussion.

2 Relevance Vector Machines
Let Dtrain = {x, t} = {xi, ti}m

i=1 be a training
sample where xi = (x1

i , . . . , x
n
i ) are feature vectors

in n-dimensional real space and ti are hidden com-
ponents either real (for regression) or from {−1, 1}
(for classification). Consider the family of algorithms
h(xnew, w) =

∑m
i=1 wiK(xnew, xi) + w0, where

{wi}m
i=0 are some real parameters or weights. Estab-

lish normal prior distribution on weights P (wi|αi) ∼
N(0, α−1

i ). The set of parameters α determines the
model in which the posterior distribution over weights
is looked for. For this model the evidence (or marginal
likelihood) is given by the following equation:

P (t|x, α) =
∫

W (α)
P (t|x,w, α)P (w|α)dw (1)

where P (t|x,w, α) is likelihood of training data
(or more exactly likelihood of hidden components
configuration) with respect to the given algorithm,
W (α) - weights space in the model determined by
α. Likelihood function is determined by expression
m∏

i=1
exp

(
−‖ti−h(xi,w)‖2

2λ2

)
in case of regression and

calculated as
m∏

i=1

1
1+exp(−tih(xi,w)) in case of classifi-

cation.
Using known maximal evidence principle

we should select α by maximizing (1) and
then get posterior distribution P (w|t,x, α) ∝
P (t|x, w,α)P (w|α). For classification prob-
lems direct calculation of (1) is impossible due to
intractable integral. Tipping used Laplace approx-
imation for its estimation. Function Lα(w) =
log(Qα(w)) = log(P (t|x, w, α)P (w|α)) is ap-
proximated by quadratic function using its Taylor
decomposition with respect to w at the point of
maximum wMP . Such approximation can be then
integrated yielding

P (t|x,α) ≈ Qα(wMP ) | Σ |1/2, (2)

Σ = (−∇w∇wLα(w) |w=wMP )−1 =

= (−∇w∇w log(P (t|x, w, α))−A)−1 (3)

where A = diag(α1, . . . , αm). Note that for regres-
sion problems expression (2) comes to exact equation.
Differentiating expression (2) with respect to α and

setting derivatives to zero leads to the following itera-
tive re-estimation equations:

αnew
i =

γi

w2
MP,i

(4)

γi = 1− αold
i Σii (5)

Here γi is so-called effective weight of ith parameter.
It shows how much the corresponding weight is con-
strained by regularization term established by prior. It
can be easily shown that γi ∈ [0, 1]. If αi is close to
zero, wi is almost unconstrained and γi is close to one.
On the contrary in case of large αi the corresponding
parameter wi is close to zero and is not much affected
by training information. So its effective weight tends
to zero.

The training procedure consists of three iterative
steps. At first we search for the maximum point wMP

of Lα(w). Then we estimate Σ according to (3) and
use (4), (5) to get the new α values. The steps are
repeated until the process converges.

In Bayesian framework decision is made by in-
tegrating throughout all algorithms within the model
with respect to probabilistic measure derived by pos-
terior probability P (w|t, x,α):

P (tnew|xnew, t, x, α) =

=
∫

W (α)
P (tnew|xnew, w, α)P (w|t, x, α)dw (6)

In RVM posterior distribution is approximated by set-
ting P (w|t,x, α) ≈ δ(w − wMP ) resulting in the
expression:

P (tnew|xnew, t, x, α) = P (tnew|xnew, wMP , α)
(7)

It was shown [4] that RVM provides approximately
the same quality as SVM. Moreover RVM appeared to
be much more sparse, i.e. the rate of non-zero weights
(relevance vectors) is significantly less than the rate of
support vectors.

3 Kernel Selection
Although maximal evidence principle is fully given in
probabilistic terms we may suggest its another inter-
pretation. Equation (2) can be viewed as a compro-
mise between accuracy of algorithm on the training
sample (the value of Qα(wMP )) and its stability with
respect to small changes of parameters (expressed by
squared root of inverse Hessian determinant). Then
we may formulate stability principle. The more ”sta-
ble” the algorithm is, the better its generalization abil-
ity becomes. The notion of stability is quite informal.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006       369



−1 0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

h
(x

)

Initial h(x)

h(x) after small weight modification

x1 x2

x3

−1 0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

h
(x

)

Initial h(x)

h(x) after small kernel center modification

x1 x2

x3

(a) (b)

Figure 1: The likelihood of the training sample is a product of likelihoods in each training object x1, x2, x3. In
case of small σ values small change of weight still keeps the likelihood of the corresponding object high enough
(a) while small shifts of relevant point (gaussian center) make likelihood significantly lower (b).

Different definitions of stability and their relation to
generalization ability were investigated [13, 14]. Here
we understand stability as ability to keep large likeli-
hood (or more exactly the values of Qα(w)) as long as
possible moving from the point of maximum in algo-
rithms parameter space. Such view allows to modify
the concept of Bayesian regularization for the cases
where its direct application is impossible or not rea-
sonable.

In straightforward approach kernel parameter σ
can be treated as one more meta-parameter (like α)
and evidence maximization procedure can be used for
its determination [11, 17]. However, in this way too
small values of σ can be chosen. Indeed, small σ
values lead to overfitting and high accuracy on the
training sample (high value of the first term in (2)).
At that almost all objects from the training set have
non-zero weights and the influence from the neigh-
boring objects can be neglected. Small variations of
object’s weight just change the height of the corre-
sponding kernel function, but doesn’t change classifi-
cation of object in the kernel center (Fig. 1 (a)). This
means that small weight’s modification cannot change
Lα(w) much and the likelihood after modification is
still very high. At the same time the second term in
(2) even encourages small σ as the algorithm becomes
more stable with respect to the changes of weights.
However, if we start moving the position of the kernel
center, the likelihood of the training object changes
dramatically (Fig.1 (b)). So small σ makes classifica-
tion unstable with respect to shifts of the kernel cen-
ters.

Actually stability with respect to weight changes

is important for selection of regularization coefficients
α. Parameter of kernel function σ is responsible
for stability with respect to kernel shifts. Hence
kernel selection requires inclusion of kernel centers
into decision model resulting in hE(xnew, w,z) =∑m

i=1 wiK(xnew, zi)+w0. In the extended model di-
rect calculation of evidence (1) becomes impossible
even for regression case. Laplace approximation for
evidence requires additional optimization w.r.t. ker-
nels locations z maximizing

Lσ,α(w, z) = log(P (t|x,w, z,α)P (w|α)P (z))
(8)

Unfortunately optimization of Lσ,α(w, z) with re-
spect to z is too difficult due to large amount of di-
mensions as z ∈ Rmn. Moreover unlike h(x,w)
function hE(x,w, z) is non-linear with respect to ker-
nel centers z and hence Lσ,α(w, z) is multi-modal
function. This hardens optimization even more.

In Bayesian framework decision rule is con-
structed with the aid of equation (6). But in our case
(6) is intractable integral and hence we would prefer
using only algorithm which was obtained via maxi-
mization of Lσ,α(w, z). If function Lσ,α(w, z) were
unimodal then it could be approximated by its local
behaviour at the maximum point (wMP , zMP ). Now
consider the following situation. Our solution is lo-
cated in narrow peak at point (wMP , zMP ) but there
is a good stable algorithm somewhere else within the
model. The evidence of obtained answer will be high,
but the generalization ability of this single algorithm
is poor (see fig. 2). Exact evidence calculation makes
sense in case when we are able to make integration
(6). However, we can use only point estimate (7). In
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Figure 2: Example of model which has large evidence
value with quite poor point estimate. There is no profit
of large evidence value if we use only algorithm with
w = w0. At the same time local characteristics of
point w0 such as ∇w∇wQ(w) |w=w0 penalize the
obtained algorithm belonging to the model.

stability approach only local characteristics of point
taken as final solution should be considered. Such
characteristics are the value of function Lσ,α(w, z)
and its derivatives which represent instability mea-
sure. The analogies with Bayesian framework can be
used to unite these values into one equation.

Optimization of kernel locations is very difficult
and time consuming task. Moreover, our experiments
show that such optimization gives nearly no profit in
accuracy while training time increases significantly.
So we propose keeping kernel centers in training ob-
jects estimating at the same time algorithm’s stabil-
ity with respect to hypothetical kernel shifts. Then
wMP can be treated as constant which does not de-
pend on z. Assuming that there are no prior constrains
on centers location establish improper uniform prior
P (z) = const.

Denote Ai the stability of P (t|x, wMP ,z) with
respect to kernel located in zi. We assume that it may
be decomposed as if the stabilities with respect to dif-
ferent coordinates were independent

Ai =
n∏

j=1

Aij

Aij is determined by integrating the approximation of
log(P (t|x,wMP , z, α)) with parabolic function us-
ing its Taylor decomposition at the point z = x with
respect to zj

i :

Aij =

{
1
2

√
2π
b exp

(
a2

2b

)(
1− erf

( |a|√
2b

))
, b > 0

|a|−1, b ≤ 0
(9)

z=x x

Q(w,z)

Figure 3: Algorithm stability (grey area) is expressed
as integration of tail in Laplace approximation of
Q(w,z) for each zj

i .

here

a =
∂ log(P (t|x,wMP , z, α))

∂zj
i

b = −∂2 log(P (t|x, wMP , z, α))

(∂zj
i )2

The sense of equation (9) is shown on fig-
ure 3. Estimating algorithm’s stability in the first
place we would like to insure ourselves against ac-
curacy degrade on the test sample. So f(zj

i ) =
log P (t|x, wMP , z, α) is approximated with nega-
tive parabola or with a line (if second derivative is
non-negative) at point zj

i = xj
i and decreasing tail of

approximation is integrated yielding stability measure
Aij . If xj

i were an extremum point of f(zj
i ) then Aij

would be proportional to the result of Laplace approx-
imation taken along xj

i coordinate.
For uniting stability and accuracy in one expres-

sion we should consider the weight of each kernel.
Actually if the weight of kernel is close to zero its
stability doesn’t play important role. Taking into con-
sideration the effective weights (5) of each kernel γi

which vary from 0 to 1 we get the expression for total
stability of likelihood with respect to all kernels

Z =
m∏

i=1

Aγi

i =
m∏

i=1

(
n∏

j=1

Aij)
γi (10)

Multiplying Z and the value of likelihood at the
point wMP we get kernel validity value

KV = P (t|x, wMP ,z, α)Z (11)

The kernel function which corresponds to the largest
validity value is supposed to be the best one for the
particular task.

Thus the procedure for selection of width parame-
ter σ in gaussian parametric family of kernel functions
becomes the following:
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1. Choose some σ value.

2. Put z = x.

3. Train RVM algorithm with selected σ.

4. At the point wMP calculate kernel validity (11),
where components Aij are taken from (9), while
effective weights γi are determined by (5).

The σ value corresponding to the largest validity value
is considered to be the optimal one.

4 Experimental Results
We compared kernel selection performance of kernel
validity index vs. cross-validation using 9 classifica-
tion problems from UCI repository. For each task we
randomly split 20 times the data into train (33%) and
test (67%) sets and use RVM with kernels of differ-
ent width (σ = 0.01, 0.1, 0.3, 1, 2, 3, 4, 5, 7, 10). Test
errors corresponded to the kernels with maximum va-
lidity and with best cross-validation estimate averaged
by 20 pairs of train/test tables together with their stan-
dard deviations are shown in table 1. Columns RVM
CV and SVM CV show the averaged test error with
kernel selection according to 5-fold cross-validation
for RVM and SVM. RVM MV shows averaged test
errors corresponded to maximum kernel validity in-
dex. Column SVM MV shows how SVM performs
with the same kernels as in RVM MV. This column
helps us to check whether the optimal kernel width is
defined only by the problem itself or also by the train-
ing algorithm. Finally MinTestError column contains
minimal possible test error.

The results from table 1 were rated in the follow-
ing way. The least test error was given one point,
while the second two points, etc. The worst result was
assigned four points. Total results are shown in the
last line of the table.

Experimental results show that RVM and SVM
have competitive performance although RVM gen-
erated 5-8 times less kernels than the correspond-
ing SVM. Also our kernel validity measure works
at least not worse than cross-validation alternative.
But our approach has two advantages. The algorithm
should be trained only once thus requesting signifi-
cantly less time for training. Another good property
of the proposed index is its unimodality. Unlike cross-
validation measure which has lots of local extrema
KV (σ) may be optimized using gradient or quasi-
gradient methods. Very interesting effect is poor qual-
ity of SVM performance using the kernels which were
considered to be the best (in sense of our validity mea-
sure) for RVM. This proves that kernel validity de-
pends much on the method of training vector machine

classifier. Also we should mention that neither cross-
validation nor maximum validity index lead to mini-
mum possible test error. This can be connected both
with peculiarities of training sample and with the fact
that test sample may be biased with respect to the uni-
versal set.

5 Discussion and Conclusion
Unlike structural risk minimization [2] which re-
stricts too flexible classifiers and minimum descrip-
tion length approach [16] which penalizes algorith-
mic complexity, the concept of Bayesian regulariza-
tion (and its modification described above) tries to es-
tablish the model where the solution is stable with re-
spect to changes of classifier parameters. We decided
to move from probabilistic approach and concentrate
directly on idea of stability rather than on applying
maximal likelihood principle to models (i.e. maximiz-
ing evidence). The proposed characteristic of kernel
validity does not show how good is the kernel for par-
ticular task. It only can serve for estimation of kernel
utility in case of fixed training procedure (in our case
this is RVM). This happens because we do not esti-
mate the validity of whole model (as we use only one
classifier with w = wMP ) but consider only local
stability of Qα(w) at point wMP .

The idea to take into consideration both the model
of algorithms and particular training procedure (our
ability to find good algorithm inside the model) for es-
timation of algorithm’s quality is not novel. For exam-
ple, Vapnik proposed so-called effective VC dimen-
sion [2]. Unlike traditional VC dimension new notion
suggests consideration of training sample and consid-
ers only those algorithms which can be obtained in-
side the model using particular training sample. As
a result error bounds become more accurate. Pop-
ular boosting and bagging techniques are said to in-
crease both training accuracy and generalization abil-
ity of algorithms. These methods make algorithm’s
model sufficiently more complex. Nevertheless, ef-
fective way of choosing particular algorithm inside
the extended model avoids drawbacks of such com-
plication. Explicit consideration of training procedure
together with model’s properties led to new theory of
algorithms quality estimates, based on combinatorial
approach [15]. In our case we are not able to consider
all possible algorithms inside the model (to integrate
over posterior probability P (w|t, x,α)). However,
consideration of local stability of Q(w,z) at point
wMP (our ability to find good algorithm inside the
model) gives us appropriate technique for kernel se-
lection task.

This method seems to be quite general and proba-
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Table 1: Experimental results for classification problems (error rates and standard deviations).
Sample Name # obj. RVM CV SVM CV RVM MV SVM MV MinTestError
AUSTRALIAN 690 15.5± 1.2 16.5± 1.9 18.6± 1.35 21± 3.6 13.4

BUPA 345 41± 0.4 37.5± 2.5 39± 0.6 37.6± 3.8 31
CLEVELAND 343 18.6± 1.8 21± 2.7 20± 2.5 28± 5.6 17

CREDIT 690 17.3± 2.7 18± 1.6 16.9± 2.4 20± 2.9 14.5
HEPATITIS 155 43± 5.6 39.17± 3.8 39± 3.9 39.21± 4.6 36
HUNGARY 294 22± 4.4 20± 2.3 24± 5.3 26± 4 18

LONG BEACH 200 25.25± 0.5 25.18± 0.9 27± 1.7 26± 4.6 24.5
PIMA 768 34± 2.7 30± 2 27± 2.5 29.6± 2.9 23

SWITZERLAND 123 6.4± 1.6 8± 1.8 7± 2 7.6± 2.3 5.8
Total rank 21 20 20 29

bly could be applied to other complex machine learn-
ing algorithms for tuning their model parameters.
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