
Adding a Java GUI to SystemC Simulation for Virtual Prototyping
of Embedded Systems∗

Hadipurnawan Satria
Sun Moon University

Department of Computer Sciences
Kalsan 100, Tangjeong, Asan, Chungnam

Republic of Korea

Jin B. Kwon
Sun Moon University

Department of Computer Sciences
Kalsan 100, Tangjeong, Asan, Chungnam

Republic of Korea

Abstract:Since a SystemC simulation program is a text-based program that uses files for its inputs and outputs, it is
minimally interactive with users. To use the SystemC simulation core for virtual prototyping of embedded systems,
a Graphical User Interface (GUI) front end for visualizing behaviors of systems and providing user interaction is
required. We propose a method for adding such a GUI front end by implementing an API library, called SCJlib, to
link the SystemC simulation program and a Java GUI application.

Key–Words:Virtual Prototyping, Simulation, SystemC, Embedded Systems

1 Introduction

Nowadays, embedded system products are found ev-
erywhere and are becoming more and more advanced.
To keep up with the market competition, the products
must be more sophisticated and feature rich, but man-
ufacturers also require a shorter time to market.

Virtual prototyping is one way to speed up the de-
velopment process and achieve a shorter time to mar-
ket without reducing the complexity of the products.
A virtual prototype can be defined as a computer-
based simulation of an embedded system with a
degree of functional realism similar to a physical
prototype[4]. Virtual prototyping is the process of us-
ing a virtual prototype, instead of a physical proto-
type, to test and evaluate specific characteristics of a
candidate design[3]. Virtual prototyping can be ap-
plied with different objectives and at different levels
of the development process; for instance, when de-
termining the feasibility of the product, establishing
and validating the client’s requirements, validating the
functional specifications, and estimating the perfor-
mance and the cost. Thus, by using virtual prototypes,
developers can carry out the above functions on the
desired system in the early stages of the development
process without actual physical hardware. This results
in a shorter development process.

Rapid prototyping is a form of collecting informa-
tion on requirements and on the adequacy of possible

∗This research is supported by university IT research center
(ITRC) project funded by Korean Ministry of Information and
Communication

designs. The prototype is eventually thrown away, al-
though it is an important resource during product de-
velopment. Incremental prototyping[2] enables large
systems to be installed in phases to avoid delays be-
tween specification and delivery. After the customer
and supplier agree on certain core features, the instal-
lation of a skeleton system occurs as soon as possi-
ble. Important requirements can be checked out in the
field, enabling changes to core features while extra,
less important, features can be added later. Reusable
software and highly modular languages are often the
most useful tools for piecing sections together[4]. In
incremental prototyping[2], a prototype is developed
through various steps from a very abstract model to a
very detailed hardware-accurate model, leading to the
real end-user application.

SystemC[5] is a system-level modeling language
based on C++ that can be used to develop proto-
types of embedded systems. One of its most im-
portant advantages is that SystemC provides multi-
ple abstraction levels of modeling, unlike VHDL and
Verilog[1, 6]. Instead, it simply adds class libraries,
which are important for designing embedded systems.
Because SystemC is an extension of C++ but does
not add any new syntax to C++, it may be familiar
to software developers. This is another main advan-
tage in embedded system development, where soft-
ware developers and hardware developers must work
together[1, 6]. It has become quite popular in the em-
bedded system community since it was introduced in
2002. A model written in SystemC can be compiled
and then executed like an executable file, which is the

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 136

virtual prototype of the model. With the help of the
SystemC built-in simulation kernel, the behavior de-
scribed by the model is simulated by running this exe-
cutable. This simulation program, often called an exe-
cutable specification, is a console text-based program
and typically is not interactive. The program usually
works on files: it reads its input from files and writes
its output to files. The input files contain all the pos-
sible combinations of inputs, and the output files con-
tain outputs corresponding to each input. Such input
and output files are sometimes referred as wave files.
The correctness of the model is validated by analyz-
ing these files, which may be a very tedious task for
the developers.

In this paper, we provide a method for adding
an interactive GUI to a SystemC simulation program.
This will make it possible to create a GUI model of an
embedded system using SystemC, which can be ana-
lyzed, tested, and verified interactively. The GUI for
SystemC simulation is a visible component, and it re-
quires no changes to the core SystemC source code.
The front end is integrated with the SystemC model by
using a set of APIs designed and implemented in this
work. The GUI is developed in Java; thus, the APIs
are divided into two parts: one for SystemC and one
for the Java GUI. The GUI application acts as the front
end for the SystemC program. The SystemC simula-
tion is connected to the environment through this GUI,
instead of by reading and writing files. The SystemC
simulation requests inputs from, and gives outputs to,
the GUI, which in turn requests input from, and gives
outputs to, the user. This graphical interaction reduces
the development process, because it is easier to use
and less prone to error.

2 System Architecture

The objective of this work is to provide a way of inte-
grating two independent programs, the SystemC sim-
ulation program and the Java GUI program. The Sys-
temC simulation is the core program, also called the
back end, and the Java GUI acts as a front end. In
order to create seamless integration between the two,
there are two considerations. First, the GUI program
should represent the running simulation graphically.
Thus, the GUI should know every user-visible output
from the simulation. These output data must be sent
out from simulation program to the GUI continuously
during the simulation. Second, users should be able to
interact with the simulation via the GUI. Hence, every
input received from users should be transferred to the
simulation program continuously during the simula-
tion. These inputs may cause the some reaction from
the simulation, which then should be visualized in the

output
modules

modules
input

modules
control

objects

objects
input

output visulization

user inputs

SystemC Simulation Java GUI
(Back−end) (Front−end)

broker broker

Figure 1: System architecture

GUI.
Our proposed system architecture is shown in

Figure 1. We classify SystemC modules into three
types based on their user-interactivity:input modules,
output modules, andcontrol (or computing) modules.
Control modules get data from input modules and put
data to output modules. Since input modules and out-
put modules should interact with users, they are visu-
alized byoutput objectsand input objectin the GUI
part, respectively. Thecontrol modulesdo not have
any counterparts in the GUI part, because they never
interact directly with users and the GUI does not do
any computations except graphical visualization. The
communication between the modules in back end part
and their counterparts in the front end part are super-
vised by twobrokersresident in each part.

Two scenarios are presented below to provide
better understanding of the data transfer mechanism
which happens between two parts. First, suppose an
output moduleT in the back end generates datat(e.g.,
temperature) regularly at any rate. The datat then
transferred to the broker in the back end, which en-
codes the data into a message packet with the unique
identifier of the destination objectT ′, i.e., the counter-
part of the moduleT , in the front end. Then, the bro-
ker informs the broker in the front end of the packet
and immediately sends the packet. The broker in the
front end decodes the message packet to determine
which object is the destination object from the iden-
tifier in the packet, and then passest to the destina-
tion objectT ′. Finally, the corresponding output ob-
ject displays its own graphical representation of data
t. How the data represented graphically depends com-
pletely on the imagination of system developers and
only limited by the capability of the Java GUI library
in use. For instance, data can be represented by show-
ing text messages, chaning colors, or even animating
itself. Second, suppose an input visual objectC re-
ceive an a datac (e.g., a coin of 50 cents) from a user.
c then is sent out to the front-end broker, which en-
codes the datac into a message packet with the iden-
tifier of the destination input moduleC ′in the back

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 137

end. Subsequently, the front-end broker cooperates
with the back-end broker to transfer the packet. The
back-end broker decodes the message packet and de-
termines which input module should receive the data.
Finally, the input moduleC ′ receives and processes
the datac. How the user inputs are entered is also
freely up to the system developers and the capability
of the chosen GUI library. For example, the develop-
ers can use text boxes and buttons.

3 Broker-to-Broker Communication

The brokers communicate with each other by using
sockets. A socket is a software endpoint that estab-
lishes bidirectional communication between a server
program and one or more client programs. The socket
associates the server program with a specific port on
the machine where it runs, so that any client program
anywhere in the network can communicate with the
server program by connecting with socket to the spec-
ified port of the server.

The SystemC program and the GUI program are
interoperated through the brokers, which communi-
cate via sockets. Figure 2 shows the socket communi-
cation mechanism between the two brokers. Two sep-
arate sockets are used for communication. The first
one is used to send output from the back-end broker
to the front-end broker. The back-end broker sends
data while the front-end broker listens for data. The
second one is used for the opposite process: the front-
end broker sends data while the back-end one listens
for data. Each socket must be associated with a prede-
termined port, where the front-end broker always acts
as the socket server while the counterpart is always
the socket client.

Socket communication can be synchronous or
asynchronous. With synchronous communication, the
listening endpoint will block while waiting for data.
In contrast, in asynchronous communication, the lis-
tening endpoint will not block and will continue ex-
ecuting with or without data. The implementation of
synchronous communication is simpler, but the block-
ing may cause some problems. Java can utilize its
multi-thread support and use a separate thread to listen
to data synchronously, without blocking other activi-
ties. On the other hand, SystemC’s own scheduling
system does not allow for generic multi-thread sup-
port such as POSIX threads. As a result, the SystemC
part must use the more complex asynchronous mech-
anism for listening to socket data.

Using socket communication allows the SystemC
part and the Java part to be in separate machines con-
nected through a local area network or even the Inter-
net. However, the two predetermined ports must be

SystemC Java

Broker Broker

Socket Server

Socket Server

Socket Client

Socket Client

Synchronous communication
Asynchronous communication

Figure 2: Socket Communication between Brokers

Broker Broker

ModuleY

ModuleX

ModuleY

ModuleX

data_B

data_A

data_AModuleY data_AModuleY data_AModuleX data_BModuleX data_B
data_B

Figure 3: Data encoding

available and open on both machines.
Each data element is encoded before being trans-

mitted. The encoded data has two parts, the header
and the body. The data header contains a module
name. This is the name of the source module that
sends the data, and it is also the name of the desti-
nation module that receives the data. The receiving
broker uses this information to determine the module
to which the data must be delivered. The body part
contains the data itself as string of bytes. The receiv-
ing module is responsible for any type casting nec-
essary. Figure 3 shows how the data transferred and
being modified on the way.

The sockets are implemented for each side us-
ing the corresponding language, C++ for the SystemC
part and Java for the GUI part. The C++ implementa-
tion is a class approach which use classes to encap-
sulate all socket functionalities from operating sys-
tem. The operating system for SystemC machine is
assumed to be POSIX compliant and the socket func-

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 138

tions used are low level POSIX System Calls. This
can be accomplished in Linux or Windows with Cyg-
win[11] installed. On the other and, the java imple-
mentation is operating system independent, due to
java portability. The java implementation is event
based, using listener / adapter classes to listen and re-
act for events, in this case event of data proceeding.

The SystemC part is the server side, so it must
do these following steps in order to accept connection
from the client. First, it must create a socket, using
socket() system call. Then, it must bind the socket to
an address using the bind() system call. For a server
socket on the Internet, an address consists of a port
number on the host machine. Subsequently, it can now
listens for connection using the listen() system call.
After it receipts a connection, it can accept that con-
nection using the accept() system call. This call typ-
ically blocks until a client connection connects with
the server. Finally theSystemC part can send and re-
ceive data. All these steps are encapsulated inside a
class, so in point of fact the SystemC part only has to
create the instance of the encapsulating class and auto-
matically able to send and receive data, after a client
connection received. The GUI part is the client side
of socket connection, and utilizes java built-in Socket
class. The main class is Socket class which is a built-
in java class, and some more classes are implemented
on top of Socket class to achieve desired function-
alities. These classes enwrap socket class and pro-
vide events mechanism to notify if there is any data
available[12]. The GUI program must listen to this
event and get the data whenever it is available. On the
other hand, the classes also provide APIs for the GUI
program to request sending data to the SystemC part.
These implementations are using java multi-threading
system.

4 Broker APIs

We defined and implemented the broker APIs for each
side, which are a little different due to the use of the
different languages. To make it easy to understand
our APIs, we use a simple example prototype. The
prototype structure is shown in Figure 4.

The prototype does a very simple process, it waits
for a number as an input and returns zero when the
input is an even number and returns one when the in-
put is an odd number. The InputObjectX and its cor-
responding InputModuleX accept the input number
from user. While the OutputModuleY and its coun-
terpart OutputObjectY display the consequential even
or odd number outcome.

SystemC Simulation Java GUI
(Back−end) (Front−end)

OutputModuleY

InputObjectX

OutputObjectY

InputModuleX
port_aport_a

brokerbroker

port_b port_b

port_c

Figure 4: Structure of the simple prototype

+createOutput(in ID)
+createInput(in ID)
+init()
+term()
+processTasks()

SCJBroker
-ID
-port

SCJInput

+write()

-ID

SCJOutput

Figure 5: Class diagram for SystemC program

4.1 SystemC-side APIs
The SystemC part of the example program con-
sists of three modules:Broker , InputModuleX ,
andOutputModuleY , and two ports:port a and
port b. Broker is responsible for getting an input
from the front end and passing it toInputModuleX ,
which waits for an input fromBroker and passes it
to OutputModuleY . Then,OutputModuleY pro-
cesses the input and produces an output. The two ports
are used as communication channels to transport sig-
nals and data between modules in the SystemC pro-
gram. This library is designed so that the ports can
also be used to transport signals and data between the
SystemC program and the java (GUI) program.

Figure 5 shows the class diagram of the SystemC-
side APIs. They should be implemented so that
they fit into the SystemC program structure. There
are three classes:SCJBroker , SCJInput , and
SCJOutput . SCJBroker is a class for the bro-
kers, and the other two are classes for the communi-
cation channels to exchange data between the broker
and other modules.

TheSCJBroker class must be handled in a spe-
cial way, because of the way that the SystemC simu-
lation mechanism works. The SystemC modules con-
nect to each other using ports and signals. During the

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 139

run-time of the simulation, the SystemC simulation
kernel creates an execution schedule for the modules
and runs them in sequence according to the sched-
ule. Each module has a special function, called by
the simulation kernel at its execution, to turn on the
schedule. However, the module is scheduled and run
only when it is in a ready state. A module is triggered
and becomes ready when the value of a sensitivity port
changes. That is, only modules in the ready state can
be scheduled to be run by the kernel. A module is not
blocked unless it yields execution itself. Then, when
the module is blocked, the kernel runs and switches
to the next module. The running time of a module
is called one cycle. Therefore, theSCJBroker class
should be wrapped by a SystemC module so that it can
be scheduled and run by the SystemC simulation ker-
nel. The wrapped class ofSCJBroker must be run
as often as possible, i.e., every cycle, to make it vir-
tually always running and available for the front end
program. The class also requires write access to the
input ports, because it writes to them each time inputs
from the front end arrive.

SCJBroker is wrapped by aSC THREADmod-
ule that is sensitive to a clock edge (positive or neg-
ative edge), so it can be scheduled every clock cy-
cle. Each time the function is triggered, program con-
trol must be passed toSCJBroker inside the body
of the module. TheSCJBroker class has the pro-
cessTasks() method for this purpose. Figure 6 shows
the main part of the wrapper module ofSCJBroker ,
Broker . Inside the main function BrokerLoop(), the
broker calls theBrkr.processTasks() method
that transfers control toSCJBroker . SCJBroker
receives an input from the front end and processes it
only when the method is called, so the method should
be run as often as possible. That is why it is called in-
side the main function of theBroker module, which
is scheduled every cycle. In this way,SCJBroker
can look as though it is always running.

The wrapper module must also be bound to the
ports from which the input modules receive the inputs
through the broker from the front end. When it re-
ceives an input,Broker writes it to the input ports.
Thus, the input modules expecting inputs from the
front end can listen to these ports, without directly
accessingSCJBroker . To allow SCJBroker to
write directly to the SystemC ports, the ports should
be registered first. InsideBroker ’s constructor, each
registration is done by callingcreateInput()
of SCJBroker and passing the ID and instance
of the port as parameters, as shown in Figure 6.
createInput andcreateOutput methods cre-
ate instances ofSCJInput and SCJOutput , re-
spectively, and automatically register the IDs to
SCJBroker . The init() and term() methods

SCJBroker Brkr;
SC_MODULE(Broker) {

sc_out<int> port_a;
sc_in_clk Clk;

SC_CTOR(Broker) {
SC_CTHREAD(BrokerLoop, Clk.pos());
Brkr.createInput("port_a", &port_a);

}

void BrokerLoop() {
while(1) {

Brkr.processTasks();
wait();

}
}

};

Figure 6:Broker module

SC_MODULE(InputModuleX) {
sc_in<int> port_a;
sc_in<bool> port_b;

SC_CTOR(InputModuleX) {
SC_METHOD(inputX);
sensitive << port_a;

}
void inputX() {

if(port_a.read()%2)
port_b.write(true);

else
port_b.write(false);

}
};

Figure 7:InputModuleX module

must be called before the simulation starts and be-
fore the simulation ends, respectively. In the example,
theBroker module is bound toout port a, which
delivers inputs to be sent toInputModuleY . Inside
the constructor ofBroker , portout port a is also
bound toport a, an instance ofSCJInput .

WheneverSCJInput receives an input from
SCJBroker , it transforms the input into a SystemC
signal and writes it to the corresponding port. The
modules bound to this port receive the signal and then
process it. Here, we can see thatInputModuleX
does not have any API object (see Figure 7. The mod-
ule simply declares a portport a. The input value
from the front end is automatically converted into a
signal in the port.

The implementation of theSCJOutput class
is quite straightforward. Any modules that must
send output simply create instance of SCJOutput and
call its write() method directly. The corresponding
SCJOutput requests SCJBroker to transfer the output
to the other part. SJCManager transfers this by using
its transferOutput() method. The ID of SCJOutput de-
termines the destination of its output. It always arrives
at the SCJOutput of the other part that has the same ID
identifier.

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 140

SC_MODULE(OutputModuleY) {
sc_in<bool> port_b;
SCJOutput *sout;

SC_CTOR(OutputModuleY) {
SC_METHOD(displayY);
sensitive << port_b;
sout = Brkr.createOutputStream("port_b");

}

void displayY() {
*sout->write(port_b.read());

}
};

Figure 8:OutputModuleY

int sc_main(int argc, char *argv[]) {
sc_signal<int> port_a;
sc_signal<bool> port_b;

sc_clock TestClk("TestClock", 10,0.5,0.0);

Broker BR("Broker");
BR.port_a(port_a);
BR.Clk(TestClk);

InputModuleX imX("InputModuleX");
imX.port_a(port_a);
imX.port_b(port_b);

OutputModuleY omY("OutputModuleY");
omY.port_b(port_b);

Brkr.init();

sc_start(-1);

Brkr.term();
}

Figure 9:OutputModuleY

Figure 8 shows the application of the write
method in the example model. OutputModuleY uses
the write() method to send output to users.

In the scmain function, the init() function must
be called before the simulation begins, i.e., before
calling the function scstart(). This function will block
the simulation program and wait until it receives a
connection from the Java front end. Before the sim-
ulation finishes, the term() function must be called to
end the connection to the Java front end.

4.2 GUI-side APIs

Figure 10 shows the class diagram of the Java GUI-
side implementation. This implementation is simpler
than the SystemC part, because it is straightforward
and uses the basic mechanisms found in most Java
programs. The user input mechanism uses the pop-
ular Listener interface and theAdapter class
provided in Java. It also exploits Java’s event and
thread mechanisms. Figure 11 shows the front end

+createOutput(in ID)
+createInput(in ID)
+init()
+term()

SCJBroker

+receiveInput()

-ID

SCJOutput

+write()

-ID

SCJInput

+outputNotification()

SCJOutputAdapter

+outputNotification()

SCJOutputListener

Figure 10: Class diagram for the GUI front end

Figure 11: Class diagram for the GUI front end

of the example prototype, which is implemented us-
ing standard Swing objects such asJButton and
JTextField .

Similarly to the SystemC Part, inputs are sent
from the user to SystemC by creating instances of
SJCInput and calling their write() methods. The
SCJBroker then receives this input and transfers it to
the back end, using its transferOutput() method. The
ID of SCJOutput determines the destination of its out-
put. It always arrives at the SCJOutput of the back end
that has the same ID identifier.

In the example model, the front end uses a button
to trigger the sending of the input to the other part.
The actionPerformed() method is responsible for han-
dling the button-pushing event. Inside this method,
the front end calls the write method of the correspond-
ing input, i.e., porta.

As mentioned above, the input mechanism uses
Java events and the Listener interface and Adapter
class. Every class that requires a particular input must
listen to the SCJInput of that particular input. When-
ever SCJBroker receives input from the SystemC part,
it passes the input to the corresponding SCJInput.
Then SCJInput notifies all of its listeners and passes
the input to them.

The example code uses the InputAdapter to create
the inner class to handle the input whenever it arrives.
Then the handler processes the input; in this case, the
handler simply adds some zero digits before the input
number if necessary to make it always four digits long.

The createInput and createOutput methods create

...
port_b = Brkr.createInput("port_a");
...
public void actionPerformed(ActionEvent e) {
port_a.write(textA.getText());
}

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 141

display_value.addInputListener
(new CommunicationInputAdapter() {

public void receivedInput(String strInput) {
System.out.println("read "+strInput);
textB.setText(strInput);

}
};

Display
Button

Temperature
Water

Controller

Controller

Coin
Reader

Money
Display

Temperature
Sensor

Display
Temperature

Water

Pad
Button

Dispensor
Item

insert coin

coin
value

button
pushed

enable
buttons

push
button

buttons

coin

dispense item

tugar

milk

coffee

item dispensed

ready
display

coin inserted

display
value

heat water

temperature

temparature
From
Broker

To
Broker

(a) SystemC Model

(b) Front end GUI

Figure 12: Vending machine prototype

SCJInput and SCJOutput respectively, and they auto-
matically register their IDs to SCJBroker. The init()
and term() methods must be called before the simula-
tion starts and before it ends.

5 Case Study: Vending Machine
Prototype

We implemented a vending machine prototype as a
case study of our API library. Figure 12(a) shows the
simulation model of our vending machine. The model
consists of modules connected to each other by ports,
and each module may be a composition of some sub-
modules. Figure 12(b) shows the GUI front end of
the vending machine prototype developed with Java
Swing. The typical use scenario assumed in this vend-
ing machine is as follows. An incoming user inserts
enough coins for an item that he or she wants to buy
and then presses the button for the item, waits for a
moment, and takes the item. Optionally, he or she can
retrieve change by pressing the “Get Change” button.

SC_MODULE(MoneyDisplay) {
sc_inout<bool> display_ready;
sc_in<int> display_value;
SCJOutput *sout;

SC_CTOR(MoneyDisplay) {
SC_METHOD(showDisplay);
sensitive << display_ready.pos();
sout = Brkr.createOutput("display_value");

}

void MoneyDisplay::showDisplay() {
if(display_ready.read() == true) {

*sout->write(\
i_to_a(display_value.read()));

display_ready.write(false);
}

}
};

display_value.addInputListener(\
new CommunicationInputAdapter() {

public void receivedInput(String strInput) {
\\ display strInput

}
};

All the modules exceptController are
categorized into input modules and output mod-
ules. These modules connect to their counter-
part objects in the front end. The output mod-
ules such asButtonDisplay , MoneyDisplay ,
and Water- TemperatureDisplay require in-
stances ofSCJOutput in the back end and of
SCJInput in the front end. For example, mod-
ule MoneyDisplay shows how much money has cur-
rently been deposited by the user. This module calls
its output “displayvalue” and creates an instance of
SCJOutput with that identifier. Whenever the module
must produce output, it calls the write() method of the
corresponding SCJOutput instance.

The Java part listens to this input, “dis-
play value”, by using a listener interface. The Java
part has the corresponding SCJInput with the same
identifier, “displayvalue”. The Java part registers its
listener to this SCJInput so it knows every time a dis-
play value is received from the other part. Then it dis-
plays the value after doing some processing of the dis-
play value. In this case, the value is formatted so that
it always has four digits to be displayed, by adding
any necessary zero digits in front of it.

On the other hand, to process input received from
the Java part, the SCJBroker in the SystemC part must
be wrapped within a module. As in the previous
example model, in this vending machine model, the
SCJBroker is wrapped within a module called Broker.

For example, the CoinReader module waits for
the user to deposit coins. Thus, it must wait for input
from the Java part. The implementation of the Coin-
Reader module does not differ from the normal non-
GUI implementation. The CoinReader module must

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 142

SC_MODULE(CoinReader) {
sc_inout<bool> insert_coin;
sc_in<int> coin;

SC_CTOR(CoinReader) {
SC_THREAD(readCoin);
sensitive << insert_coin.pos();

}

};

SC_MODULE(Broker)
{

sc_out<bool> insert_coin;
sc_out<int> coin;

...
SC_CTOR(Broker)
{

...
Brkr.createInput("insert_coin", insert_coin);
Brkr.createInput("coin", coin);

...
}

};

simply be connected to a port, from which it receives
coin inputs. In this case, the module connects to two
ports, insertcoin and coin. The insertcoin port has a
boolean value and acts as a flag that tells the module
whenever a coin has been inserted. The coin port has
an integer value and contains the value of the inserted
coin.

The Broker module is responsible for delivering
data received from the Java part to the module that ex-
pects the data, as in the case of the CoinReader mod-
ule. The Broker module converts the data into a Sys-
temC signal and sends it through the SystemC port
connected to the respective module. Thus, the Broker
module must be connected to all ports through which
it can send data. Initially, the Broker module registers
all possible inputs that it can receive and the port to
which it must send the input.

The Java part itself receives input from the user
interactively. The mechanism of retrieving input from
the user is only limited by the Java GUI capabilities.
After receiving input in some arbitrary way, the Java
part sends the input through SCJOutput instances.

For example, when the user inserts a coin, the
Java part receives this input and sends it to the Sys-
temC module that expects this input, i.e., the Coin-
Reader module. The Java part creates two SJCInputs
instances and assigns their identifiers as “insertcoin”
and “coin”. These identifiers are the same as the iden-
tifiers of SJCOutputs] in the SystemC part to which
the input must be sent. When the user inserts a coin,
the Java part sends this input by calling method write()
of each SJCInput. To the insertcoin SCJInput, it
sends the value 1, which means a coin has been in-

serted, and to the coin SCJInput it sends the money
value of the inserted coin.

6 Conclusion
This work attempts to add a GUI front end to Sys-
temC by using an independent Java GUI application
and a set of API libraries to integrate the two indepen-
dent programs. In this way, the SystemC simulation
can become a GUI simulation and can communicate
interactively with the user. This is in contrast to the
normal SystemC simulation, which is text based and
uses files for its input and output. With the added GUI
front end, SystemC becomes more suitable for virtual
prototyping of embedded systems, and developers can
easily design and build a virtual prototype of a desired
system.

References:

[1] J. Bhasker.A SystemC Primer, 2nd Edition. Star
Galaxy Publishing, 2003.

[2] M. Hallmann. A Process Model for Prototyping.
In Proc. of Software Engineering and its Appli-
cations, pages 9–13, Toulouse, France, December
1991.

[3] Frank Vahid and Tony Givargis.Embedded Sys-
tem Design: A Unified Hardware/Software Intro-
duction. Wiley, 2002.

[4] Primer on Virtual Prototyping.
http://www.gcrmtc.org/sbdc/protoprimeprint.html.

[5] SystemC Community. http://www.systemc.org.

[6] SystemC v2.0.1 White Paper: A Summary of
v2.0 Capabilities.
http://www.systemc.org/projects/sitedocs/document
/v201 White Paper/en/1.

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 143

