
A framework for the definition and generation of artificial neural
networks

Diego Ordóñez, Carlos Dafonte, Bernardino Arcay
University of A Coruña

Department of Information and Communications Technologies
Campus de Elviña, A Coruña 15071

Spain

Minia Manteiga
University of A Coruña

Department Navigation and Earth Sciences
Campus de Riazor, A Coruña 15011

Spain

Abstract: Current platforms for the definition and operation of artificial neural networks are oriented towards a
specialized user profile. This article proposes a series of software components that provide abstraction in platform
development, both with regard to the implementation of the components and the operation of the network that was
chosen to resolve a problem. This proposal has the ambitious purpose of minimizing the learning curve of the
tools and providing a framework that is oriented towards a more generic user profile. The framework is composed
by three systems: a library, in which we factorize the functionalities related to the networks, and two tools, an
interpreter and a Web application, which provide two different points of view for the development of the networks,
but both rely on the library to provide the features related to the ANNs.

Key–Words: Artificial neural networks, web application, framework, toolkit, code generation.

1. Introduction

Artificial neural networks (ANNs) are among tho-
se computational models that are inspired on the solu-
tions that nature has found in the course of evolution.
Our work is focused on developing mechanisms that
allow us to manipulate these networks and generali-
ze their use. In order to achieve these objectives, we
concentrated on presenting the user with a framework
that allows him to think of the networks. We searched
for abstraction with regards to the implementation and
execution platforms of the ANNs.

Various environments provide the user with high
level mechanisms that allow him to accelerate the de-
velopment of solutions: whereas Matlab’s Neural Ne-
twork Toolbox is a commercial version, SNNS is a
free software tool. A common characteristic for this
type of tools is that they do not provide a satisfactory
support for the export of their functionalities and the
use of ANNs in other platforms.

The here proposed alternative tries to solve some
of the problems of the existing tools for the develop-
ment of connexionist models. It is a tool that provides
the user with a series of features that are not easily
found: generation of multiplatform code, abstraction
with respect to the implementation platform, and user-
friendliness.

1.1. Objectives and scope

We started by elaborating a library for ANNs that
provides support to the features that are proper of ne-
tworks, such as architecture, training algorithms, acti-
vation functions, etc. The design of the library is su-
ch that new components can be added as a natural
process; a representative subset of networks and al-
gorithms has been implemented.

The library enables the user to export the func-
tionality of the implementation platform ANNs to the
platform where they will be used, thanks to a code ge-
neration mechanism. Our purpose is to enable a ne-
twork instance that was trained to solve a problem,
and does so succesfully, to have the same behaviour
regardless of the platform in which it is used. This
feature is particularly relevant because of the fact that
two different trainings can almost certainly never ob-
tain the same result. The central idea of or work is to
train a network once and then use it wherever it is re-
quired.

Once defined and implemented, the library provi-
des us with a support for the elaboration of other sof-
tware that delegates in it the operations related to the
ANNs. This minimizes the implementation errors du-
ring the generation of other software components that
rely on them (since the algorithms are duly tested).
We provide two development environments that make
use of it. A declarative language and an interpreter, for
users who are familiar with programming languages,

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 280

and a Web application, oriented towards fast develop-
ments. The characteristics of these approaches can be
seen in sections 2.3 and 2.2.

Our last objective is to apply this development to
real a problem with real data; this will allow us to test
its efficiency in searching for solutions using conne-
xionist models. We have tackled a problem that be-
longs to the field of Astrophysics: the extraction of
stellar parameters (such as temperature) from the in-
formation held by their spectrum.

2. Components
The kernel of the system is formed by compo-

nents mentioned in section1.1: a library (NeuralTool-
kit) and two tools, shown in Figure 1.

Figura 1: Developed components

2.1. NeuralToolkit
The main component of the system is the library

called NeuralToolkit. It is the result of factorizing the
training architectures and algorithms and other enti-
ties related to the ANNs. Their definition will mark
the limit between what can and cannot be done with
the rest of the developed components, which only pro-
vide the interface for handling the library. The Neural-
Toolkit was conceived to facilitate the addition of new
software components without changes in the system
architecture, and therefore plays a fundamental role in
incremental developments. This focus provides ample
possibilities for the maintenance and the generation of
increasingly complete software versions. The current
version of the library gives support to various entities.
In what follows, we show an inventory of some of the-
se entities according to their category, and a brief ex-
planation of why they were selected:

Network Architectures [1]: We have tried to
select a significant subset of architectures: Feed
Forward (with proven applicability for the reso-
lution of real problems), SOM (distinctly repre-
sentative of competitive architectures), Cascade

Correlation [2] (architecture network of the in-
cremental type), CPN (typical example of a com-
posed network), and Hopfield (for its behaviour
as a self-associative memory).

Training algorithms [1]: Backpropagation (on-
line and batch), Kohonen, Fahlman [2], Hopfield,
and Counterpropagation. These algorithms were
chosen according to the selected network archi-
tectures and, consequently, to train them.

Activation Functions: Linear, Sigmoid, Hyper-
bolic Tangent, Hardlimit, and their derivatives if
they exist. In our opinion, these are the most fre-
quently applied activation functions.

We have incorporated the capability of ANN
composition, which is a relevant functionality. The
composition propagates the output of a network
towards the inputs of another with which it connects.
The output of the composed network is the result
of propagating inputs throughout all the intermediate
ANNs. The output network of the composition is that
network whose output is not connected to the inputs of
any other network. The idea of the composition can be
seen in the example of Figure 2, where we observe a
simple composition of two networks: Net 1 and Net 2.
Net 1 is the network that behaves as input of the com-
position and propagates its outputs towards the inputs
of Net 2.

Figura 2: Composition of two feed forward networks

Among the innovating features are the neighbour-
hood functions, adapted to the problem for the Koho-
nen training. In NeuralToolkit framework, we can de-
fine high level neighbourhood functions for the trai-
ning (cylindrical, spherical, linear, rectangular etc).
This means that instead of indicating connectivities,
we need to specify the shape towards which the user
wants the forms to tend.

As mentioned in section 1.1, one of the central
features of the library is code generation. In this ver-
sion, the network mapping is supported by ANSI C.
We have opted for this language because the program-
mes will be fastly executed in almost any platform

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 281

for which we compile the code. Also, it is a standard
with implementations for multiple platforms, inclu-
ding embedded systems.

NeuralToolkit was implemented in Java. The ne-
twork architectures form a tree of classes that share
the feature of being what is known as serializables,
by which an instance of a concrete architecture can
be transformed into an array of bytes. This property
allows us to store the object into a database or a fi-
le and recuperate it afterwards. It is also useful if we
need to transmit the object through the network.

2.2. Web Application
The functionality, exposed by the web applica-

tion, with regard to the handling of entities related to
the ANNs, is contained in that of the interpreter, whi-
ch in turn is contained in the potential functionality
of the NeuralToolkit. However, there are differences
with regard to the visualization and the information
management:

Focus based on forms

More detailed information on the training

Better oriented error messages

Persistency of the information (patterns manage-
ment, ANNs, etc)

The focus is similar to what is offered by a stan-
dalone application, but with the advantage that it does
not require to be installed. The user who possesses an
account through which he can access the application
has the complete functionality within his reach. The
ANNs that belong to a determined user are available
in any place. The application provides the user with a
way to organize his information: the application pro-
vides pattern and ANNs repositories, the possibility
to save intermediate networks during the training and
retain the one that generalizes best, the possibility to
concatenate trainings for a determined instance of a
network if we do not agree with the performed trai-
ning, etc.

We have implemented the necessary mechanisms
to guarantee the storage of the information in a data-
base and recuperate it upon request. This feature also
provides the user with more capacity to manage the
entities he is handling; capacities that manifest them-
selves in the shape of pattern and ANNs repositories
that the user can search and recuperate at any given
moment.

The Web application was elaborated according to
the architectonic design patterns MVC1 and Layers.

1Model-View-Controller

Figura 3: Content of a page of the Web application

The application view was generated with JSP pages,
and the controller was developed with Struts [6]. The
application is packed in a standard WAR file and de-
ployed in the Web J2EE container Tomcat [7]. The in-
formation is saved in a database that can be accessed
via JDBC; the used database manager is PostgreSQL
[8].

2.3. Ad Hoc Language and Interpreter
The grammar was defined for a declarative lan-

guage that allows us to define the architectures, spe-
cify the training parameters, and perform the opera-
tions related to the ANNs.

The idea behind this alternative is to equip the
user with more expressive capacity: give the user an
alternative that allows him to carry out more complex
operations according to his knowledge. It is an alter-
native for applications of the WYSIWYG2 type, such
as the Web application presented in section 2.2.

Figura 4: Feed Forward network definition example

The code in Figure 4 defines a Feed-Forward
ANN of 3 layers (input, output, and hidden). The in-

2What You See Is What You Get

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 282

put layer has three process elements and a linear acti-
vation function, the hidden layer and the output layer
are composed by 3 and 2 process elements respecti-
vely, with a sigmoid activation function. The connec-
tion is full, as specified in the connections model. This
network definition acts as if it were the class of an
object-oriented language that can be instantiated.

The source programme can be reused in subse-
quent testing, or it can be used in other developments
as a template. The result of the programme will be the
code in some or other output language that represents
some of the instances declared in the programme. The
tool consists in the compiler that interprets this pro-
gramme and returns the source code for the output
platform.

The interpreter provides the functionality of se-
parating the definition of the network from the im-
plementation thanks to the declarative language. This
abstraction allows the user to focus on the ANNs ins-
tead of on how to implement them.

3. Application to a real problem

3.1. Problem description

The framework was used to solve a real problem
in the field of Astrophysics. We are trying to determi-
ne characteristic parameters of a star, i.c. temperatu-
re and gravity, on the basis of information extracted
from its spectrum. Figure 5 shows the spectrum of a
star with temperature 4250 K and gravity -0,5.

The patterns were obtained from the repository of
synthetic spectra at ESA3.

Figura 5: Stellar Spectra Sample

3European Spatial Agency

3.2. Description of the training network and
algorithm

Training and test inputs are composed by a total of
respectively 6135 and 3150 spectra. We have prepared
two training sets, one for each parameter4.

The network architecture that was selected to sol-
ve the problem is the three-layered Feed Forward ar-
chitecture (input, hidden, and output), and the trai-
ning algorithm is online error backpropagation. We
opted for this architecture because it has already been
tested, and very successfully so, on problems rela-
ted to stellar spectra [3]. We have tried several con-
figurations of process elements for the hidden layer,
but the best results were obtained with a hidden la-
yer of 150 (see section 3.3). Figure 6 shows an exam-
ple of a Feed Forward ANN, in which vector X =
(X1,X2,X3,X4,X5) represents the inputs and vec-
tor Z = (Z1, Z2) the outputs.

Figura 6: Generic Feed Forward architecture example

3.3. Results
The graphs of Figures 7 and 8 show the average

errors. We have carried out the training with a set of
patterns that mix noisy and clean inputs, which allow
us to train ANNs that better recognize the patterns
with noise. The symbols n10, n50, n100 and n500 in-
dicate that we have generated various versions of the
validation set by applying different noise intensities,
i.c. relations signal-to-noise of 10, 50, 100, and 500
respectively. The size of the bars in the diagram re-
presents the measurement of the average error for all
the patterns of the validation set and for the corres-
ponding signal-noise relation.

The temperatures of the training set lie in the
4000K to 8000K range5, and the gravity in the -1.0
to 5.0 range.

4Temperature and gravity
5This range is the only context that is apt for results analysis

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 283

Figura 7: Average errors in temperature

Figura 8: Average errors in gravity

The networks were trained with 10000 steps, du-
ring a total of 28 hours on a PC with AMD Athlon 64
processor, 3800 GHz and 2 GB memory. The fact of
having trained them with 10000 steps does not mean
that the results were obtained with the final network;
we save the intermediate ANNs (e.g. each 100 training
steps) and use the ANN that presents the best genera-
lization.

The problem is complex, the amount of training
and test patterns is high, and the results measured in
average errors are satisfactory ([3], [4]).

4. Conclusions
While the library provides what is needed to defi-

ne the ANNs and their handling, and the tools abstract
the implementation platform and the network desti-
nation platform, the user focuses exclusively on the
development of the networks.

The framework was entirely developed in Java
and therefore cannot be used in all the platforms for
which a virtual machine exists.

One of the most noticeable features of the deve-
loped environment is the possibility to derive from an
instance the output code of a network. We have obser-
ved the addition of new destination languages to the
development, as well as the extension of other features
such as network architecture, training algorithms, etc.
Therefore, and following the guidelines of the design,
we can increasingly develop components that subse-
quently will be added to the rest of the software.

Grouping the functionalities of the ANNs into a
library will allow the future development of new tools
based on this library without having to re-implement
the same features. This implies a smaller error margin
and an important increase in development time.

The developed tool was used to solve a real and
complex problem such as the extraction of stellar pa-
rameters from examples of stellar spectra. As we can
observe in Figures 7 and 8, the results were satisfac-
tory.

References:

[1] Freeman, J. A., y Skapura, D. M. Neural ne-
tworks: algorithms, applications, and program-
ming techniques. Addison-Wesley 1991.

[2] Fahlman, S. and Lebiere, C: The cascade-
correlation architecture. In Touretzky, D.S„ edi-
tor, Advances in Neural Information Processing
Structures 2 (1990), pages 524-532. Morgan-
Kauffmann.

[3] P.G. Willemsem, C.A.L. Bailer Jones, T.A.
Kaempf. Analysis of Stellar Parameter Uncer-
tainty Estimates from Bootstraping Neural Ne-
tworks. 2004 September 08.

[4] A. Recion-Blanco, A. Bijaoui and P. de Laverny.
Automated derivation of stellar atmospheric pa-
rameters and chemical abundances: the MATIS-
SE algorithm, 2006 April 11.

[5] https://javacc.dev.java.net/
[6] http://struts.apache.org
[7] http://tomcat.apache.org
[8] http://postgresql.org

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 284

