
On the Synthesis of Upper-Stream Models

 for Various Web Application Systems

Takakazu Kaneko, Nobuoki Mano
Graduate School of Informatics

Meisei University
 2-590 Nagabuchi, Ome-shi, Tokyo-to 198-8655 Japan

Abstract:- A system for synthesizing platform-independent models of web application systems such as
ATM simulator, students-teacher schedule managing system, and so on from problem specifications using
various kinds of domain knowledge is described. System design which solves problems in this area are
synthesized as models of problem solution based on the structure descriptions of data which are assigned as
the domain boundaries of user interface, network system, and database in the server.

Keywords:- Web application, Client-Server system, Knowledge-base, Synthesis of Upper-stream models

1 Introduction
 ATM simulator, conference-room reservation system,
and online-shopping system are classified into a kind of
service-oriented system. These systems are comprised of
heterogeneous domains such as user-interface at the
client-side, communication between client and server,
and server-side database handling with business logic
operations. As the prevailing web service system, we
often find system configuration where TOMCAT server,
Servlet, JSP, and SQL at the server-side system and
browser at the client are used. However, it is pointed out
that mixture of various kinds of languages and complex
dependency relationship between pages make the
extension and maintenance of application development
difficult. We also feel that application systems mentioned
above are worked out from common knowledge of each
domain.
 So we have been making researches on a
system-design method that makes full use of model in
our knowledge base [1]. We give in this paper an
intelligent method for generating upper-stream models
from problem structure, specifications of interactive
commands, and structure description of user database.

These upper-stream models, which reflect graph-like
problem structures in UML [2] and include logical
specifications like OCL (Object Constraint Language [3]),
resemble PIM (Platform Independent Model) in MDA
(Model Driven Architecture) [4] and will be refined to
PSM (Platform Specific Model). The derivation method
proposed in this paper relieves us not only from the labor
of writing down rigorous upper-stream models, which are
checked for their internal consistency by forward
verification and directly executed to show that they
satisfy user requirements [1], but also from the labor of
writing down a lot of specifications, which are required in
the case we have to write down when not deduced
automatically.
 This paper consists of the following chapters. In
Chapter 2 we explain features of problem definition,
knowledge base, and models in the upper-stream level
comprising of 3 domains, i.e., user interface,
communication system, and database (for simplicity, we
use data structures). In Chapter 3 we discuss the
derivation of upper-stream models from problem
specifications. We use ATM system and students-teacher
schedule managing system as our example problems.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 171

2 Problem definition, knowledge base,

and models in the upper-stream level
2.1 Web applications and their composing

domains
 One example is the ATM system, where User, ATM,
Consortium, and Bank (with AccountBase) are the
components. Interaction command sequence and
server-side database composition must be given，too.

Another example is a schedule managing system as
follows. One schedule table is a two-dimensional array
consisting of days of week and time slots. Each student
has a schedule table for himself. The teacher can have
plural schedule tables distinguished by titles. Students are
able to look at their own table and a fixed table of their
teacher, and the teacher can look at all the time-tables of
all students in addition to all of his schedule tables.
User schedules are in the database on the master-server.
These web application examples are consisting of 3
domains ， namely, communication subsystem,
user-interface, and data-structure handling subsystem.
 Each of these domains has the following features (in
the upper-stream level).

① Communication between client and server
 In this paper we only discuss synchronous systems,
namely, request-and-reply of client-server architecture
(especially for plural users, what we call
multi-client-server architecture where an exclusive
slave-server is assigned to each client).
②Client user interface and interaction
 Data input from user, data output and message from
server are shown in the user interface. Data exist first, and
from them picture elements to manipulate data are
introduced in the lower level.
③ Database (or data structures) and data extraction
operations
 In any application of web application systems we have
some databases in the server, and from them we
extract necessary data to reply to user request, or we
update the data.

Table 1 is a table which shows problem specifications,
knowledge base，models, and problem-solving of
each of these domains in the upper-stream level.

2.2 Problem specifications
 Our system requires following problem specifications as
the input.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 172

problem specifications knowledge base problem-solving models
―――
①communication:
processing structure architecture patterns derivation of definitions

for communication
operations

②user interface:
interaction sequence commands transition graph on

 interaction-phases
③data-base:
structure description abstract data-types derivation of definitions definitions for
of data and its invariant for data structure data structure

 handling operations handling
④overall:

interaction-phase action sequence of
 decomposition components

Table 1 Features of domains in the upper-stream level.

① Processing structure
Components, which denote autonomous entities, such as
user, client，server，and intervening component, and
combination between them are specified with multiplicity
which shows the correspondence information between
these sets. ATM system consists of set of components:
User, ATM, Consortium, and Bank (with AccountBase).
② Specification on interaction sequence
 A system transition graph consisting of
interaction-phase set and system state set is obtained from
the regular expressions of interaction sequences. An
assertion must be given to each system state. Each of the
precondition-post-condition specification of
interaction-phases is determined from those assertions of
adjacent system states. A command (shown in the next
section) with an input-output specification corresponds to
each interaction-phase.
③ Specifications on structure and constraints of the
database on the server
For example, the structure of AccountBase in the ATM

system is given by the relation, { <accountNumber,
password, balance>} and the constraints are given by the
description

key(accountNumber),
accountNumber → password,
accountNumber → balance,

where ‘→’ and ‘,’ represent functional dependency
relationship and logical-and, respectively.
② and ③ must be specified with same vocabularies as
for their common parts.

2.3 Knowledge base
①Architecture pattern and related send/receive-action
specifications

Parametric design pattern and architectural pattern
definitions [5],[6],[7] bring us flexible usage of
knowledge on actions. In our system, send-action and
receive-action specifications of components are
determined by using client-server and multi-client server
architecture patterns.

 As the result of matching the architectural pattern
with concrete problem substructure (e.g.,
ATM-ConsortiumSlaveServer), component names, and
messages (command name with argument part) in the
role are fixed with corresponding concrete names.

The context descriptions of component roles
(|RoleName represents role name) in the
multi-client-server pattern are as follows. In Fig.1, types
of arguments of actions are represented as unary
predicates in the precondition. ‘*’ and ‘?’ marks represent
a component variable and a usual data variable,
respectively. verify(?acc, ?password) is the message-body,
and dynamic (i.e., delegating and acting-for) relationships

context |Slave::|receive-|action(?|Type1, ?|Type2)
 pre: |Client(*|Client), |Slave(*|Slave),

connected(*|Client, *|Slave),
 |Type1(?|Type1), |Type2(?|Type2),

 message(*|Client, *|Slave,
 |action(?|Type1, ?|Type2));

 post: |action(?|Type1,?|Type2},
 |actionFor(*|Slave, *|Client);

Fig.1 Meta-level definition of receive-action of slave
server (used with the “multi-client server” architecture
pattern).

are represented by attaching "Ing" and "For" to the tails
of action names.
② Commands

The following are the representative linguistic
commands which can be used at the upper-stream level:

register, add, create, delete, verify, retrieve, enumerate,
update, modify, select, signal, fill-in, and some
commands related with data handling operations.
③ Data structure

Super and subclass relationships of data-types are
included as part of knowledge-base. Relation
data-type has the correspondence information
between sets represented with the concept of primary
key and function dependency, as the data-type
invariant. Its overwrite operator is inherited from the
mapping type. Complex data are composed of direct
product combination and hierarchical combination of
simple types.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 173

2.4 Concepts related with our upper-stream
model

 Here we explain some concepts in our upper-level
models used for target systems [1].
・ Project: model of a whole target system consisting

of interaction-phases and transitions
between them.

 (3-1) for the interaction-phase, determine its command
specification.

・ Component: agent-like independent autonomous
object. User, ATM, Consortium, and Bank are
the components in the ATM system.

・Interaction-phase: model of a meaningful unit of
interactions between components.

・ System-state: global state between adjacent
interaction-phases.

・Passive-element: object which works passively, e.g., a
database in a bank.

・ Action: operation belonging to each component
(including message-sending and
message-receiving actions) or passive-element.

・Local-state: local state between two adjacent actions
of a component or of a passive-element.

3 Derivation of the upper-stream model

- basic principle with examples -
 We pay special attention to the structure of data for
each command on the boundaries of each domain along
the path between user interface in the client and user
database in the server.

Upper-stream models are derived from application
problem specifications by the following process.
(1) Specify your target problem (as for the system

structure with description of interaction sequence at the
client and specification description of data structure at
the client and server)

(1-1) generate a transition graph consisting of
interaction-phases and system-states.
Attach an assertion to each system state. From the
assertions of preceding system states and those of
following system states, the specification of the
interaction-phase bridging these states can be
determined.

(2) Decide the applicable abstract data-type
Applicable abstract data-types for the data structure of

a target problem are found through matching structure
and data-type invariant of the problem with those in
the knowledge base.

(3) Try to form a plan (or a hierarchical group of plans)
for each interaction-phase (with related modifications)

(3-2) determine action specification for the database in
the server.

(3-3) determine send-action/receive-action specifications
of communicating subsystem.

We can obtain precondition–post-condition
specification of corresponding action (as for,
"receive-verify" action of Consortium, see Fig.2) from
the action template of component role in the pattern
(see Fig.1) [5]. Its message part is replaced by the
command and its arguments.

Consortium::receive-verify(?acc, ?password)
 pre: ATM(*ATM),Consortium(*Consortium),

connected(*ATM,*Consortium),
accountNum(?acc), password(?password),
message(*ATM,*Consortium,

verify(?acc,?password));
 post: verify(?acc,?password),

verifyFor(*Consortium,*ATM);

Fig.2 Action specification of “receive-verify” in the

Consortium component (from the architectural
pattern specification matched with problem
processing structure).

(3-4) generate a consistent plan for each

interaction-phase.
Each predicate in the post-condition of an
interaction-phase is satisfied with predicates in the
post-condition of actions, or those in the preconditions
of interaction-phase. Each predicate in the precondition
of actions in the interaction-phase is satisfied with the
predicates in the post-condition of actions or those in
the precondition of the surrounding interaction-phase.
Consistency of combination of these predicate links
(called causal links) is checked. Here, “consistent”
means that the following conditions have been proved:

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 174

 (a) there exist predicates in the post-condition of other
actions or those in the precondition of
interaction-phase in the plan,

 (b) form of the “before” relationships between actions
including causal links composes a partial order
directed acyclic graph.

 (c) there exist no disturbance of side effects already
included in the plan.

 (d) temporarily established relationships such as
“delegating” and “acting-for” are dissolved, and not
existent afterwards.

(3-5) if we can get consistent plans for all
interaction-phases, go to (4). If unexamined
interaction-phases remain, continue (3).

(3-6) if we cannot get consistent causal links over the
plan, we will try to fix transition graph in either or both
of the following way.

(3-6-1) try to generate specification definitions of actions.
Fig.3 is an example of specification generation of
“withdraw” action in the ATM problem, based on the
invariant condition that balance >= 0. We can obtain
(e) by going back to (a) which includes the operation
(b) generating the non-allowable value “balance’“. The
post-condition is further divided into two parts as to
allowable-range and non-allowable range.

(3-6-2) try to decompose an interaction-phase into the
sequence of some subcommands.
Fig.4 is an example of interaction-phase
decomposition in the schedule-managing system. Here,
the argument part of each command is separated by the
symbol ‘;’ into 2 parts: the former part represents input
arguments and the latter part represents output
argument. An intermediate system state where
candidates to be selected are shown is inserted as a
stepping-stone. The “enumerate” command collects
the specified candidates in the database and shows
them, and the “select” command is a subcommand in a
larger context, where one is selected by the user among
the shown candidates.

(3-7) if you cannot find fixing methods, go back to the
starting point and re-examine the problem.

(4) Transform the completed transition graph of
interaction-phases into the models centered around
each component like activity diagrams in UML [2].

(a) retrieval of the relational data including balance
 based on an account number

 <?acc, ---, ?balance>
(b) calculation of withdrawal

?balance’ == ?balance - ?amount
(c) update of the relational data

self ++ <?acc，---，?balance’>,
Here, ‘++’:is an overwrite operator, and
self == {<String: accountNum, String password, int

balance>},
 key(accountNum),
(d) violation of the invariant condition on balance
 allowable range: (?balance >= ?amount):

put those postconditions of (a), (b), and (c) together
 non-allowable range: (?balance < ?amount)

SystemResponce(“NO”)
(e) actionDef AccountBase::withdraw(?acc, ?amount)
 pre: accountNum(?acc), amount(?amount);
 post: self == {<?acc, ---, ?balance>}
 post-1: ?balance >= ?amount ⇒

 ?balance’ == ?balance - ?amount,
 self ++ <?acc，---，?balance’>
 post-2: ?balance < ?amount ⇒

SystemResponce(“NO”);

Fig.3 Example of generation of an action specification.

commandDef selectAndShowScheduleTable

(?setObject ; ?scheduleTable)
 pre: setObject (?setObject);
 post: scheduleTable(?scheduleTable);
=>
subCommandDef
enumerate(?setObject ; ?candidateElements)
 pre: setObject(?setObject);
 post: objectList (?candidateElements);
subCommandDef:
select(?candidateElements ; ?selectedElement)

pre: objectList (?candidateElements);
 post: scheduleTable(?selectedElement),

 ?selectedElement∈?candidateElements;

Fig.4 Decomposition example of

an interaction-phase.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 175

4 Conclusion
 In this paper we proposed an intelligent derivation
method of upper-stream models from the viewpoint of
meta-model and showed the derivation process using
ATM problem and schedule managing system as the
examples. With this method we can relieved from the
burden of rigorous and quantitative specification writing.
This method is effective to developing various web
application systems. The research on the refinement of
upper-stream models of problems to program models of
them has been pursued [8].
 Finally, the authors would like to express our
appreciation to Prof. K. Saishu and the staff of our
Graduate School of Informatics for their help and
support.

References
[1] N.Mano and T.Kaneko: A Knowledge-Based

Modeling Approach for Verification, Direct
Execution and Plan Synthesis of System Design,
WSEAS Trans. on Information Science &
Applications Issue 8, Volume 2, 2005,
pp.1065-1070.

[2] H.E.Erickson, M.Penker, B.Lyons, and D.Fado: UML
2 Toolkit, Wiley Publishing, Inc., 2004.

[3] J.Warmer and A.Kleppe: The Object Constraint
Language [Second Edition]: Getting your Models
Ready for MDA, Addison-Wesley, 2003.

[4] A.Kleppe, J.Warmer, and W.Bast: MDA Explained -
The Model Driven Architecture: Practice and
Promise, Addison-Wesley, 2003.

[5] R.B.France, et al.: A UML-Based Pattern
Specification Technique, IEEE Trans. on Software
Engineering, Vol.30, No.3, 2004, pp.193-206.

[6] F.Buschmann, et al.: A System of Patterns:
Pattern-Oriented Software Architecture, Wiley
1996.

[7] E.Gamma, R.Helm, R.Johnson, and J.Vlissides:
Design Patterns: Elements of Reusable
Object-Oriented Software [second edition],
Addison-Wesley, 1998.

[8] T.Kaneko and N.Mano: On the Refinement of
Upper-Stream Models to their Program Models in
Web Application Systems, to be published.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 176

