
Timed Automata for Web Services Verification∗

M. Emilia Cambronero, Juan J. Pardo, Gregorio Dı́az, Valentı́n Valero
Computing Systems Department
University of Castilla-la Mancha
Avda. España s/n 02071 Albacete

Spain
 {emicp,jpardo,gregorio,valentin}@dsi.uclm.es

Abstract: Timed Automata is a well known formalism for the descriptionof Real-Time System. In this paper we
show that it is useful for modelling and analyzing Web Services with time constraints. For our purposes it is enough
with the choreography level of the Web Services Architecture, so Web Services descriptions written in WSCDL
(a XML-based description languages) are translated to timed automata models. Then, the UPPAAL tool is used
to simulate and analyse the behavior of the system. The process is illustrated with a case study, an airline ticket
reservation system. The example shows the systematic translation process, and the resulting model is checked for
a suite of rather generic safeness and liveness properties.

Key–Words:WS-CDL, Timed Automata, Web Services,Verification, Model Checking

1 Introduction

Web Services are a key component of the emerging,
loosely coupled, Web-based computing architecture.
A Web Service is an autonomous, standards-based
component whose public interfaces are defined and
described using XML [6]. Other systems may inter-
act with a Web Service in a manner prescribed by its
definition, using XML based messages conveyed by
Internet protocols.

The Web Services specifications offer a commu-
nication bridge between the heterogeneous computa-
tional environments used to develop and host applica-
tions. The future of E-Business applications requires
the ability to perform long-lived, peer-to-peer collab-
orations between the participating services, within or
across the trusted domains of an organization.

Web Services cover a wide range of systems,
which in many cases have strict time constraints, e.g.,
peer-to-peer collaborations may have time limits on
completion. They are described in the top level layers
of Web Services architectures [6] with elements such
as time-outsand alignments. Time-outs allow each
party to fix the time for an action to occur, while align-
ments are synchronizations between two peer-to-peer
parties. Businesses rely on Web Services, it is there-
fore important that the Web Services framework en-
sure the correctness of systems with time constraints.
Verification of real-time properties is especially im-

∗This work has been supported by the CICYT project “De-
scription and Evaluation of Distributed Systems and Application
to Multimedia Systems”,TIC2003-07848-C02-02.

portant for Web sites that offer services with some
kind of time restrictions, such a maximum times to
keep a reservation of a flight seat, or maximum delays
to order fund transfers, etc. Since model checking of
timed automata has proven to be very useful for simi-
lar problems in other areas, we investigate, how it can
be applied for Web Services.

This verification process starts from the top level
layers of Web Services architectures [6] and more
specifically from the choreography level, thus we use
the Web Service Choreography Description Language
(WS-CDL) [6] as input for this verification process.
Therefore, the starting point are specification docu-
ments written in WS-CDL. Then, these descriptions
are translated into timed automata, and the UPPAAL
tool is used to simulate and verify the correctness of
the system.

We illustrate the approach with a particular case
study: an airline ticket reservation system, which con-
tains some time constraints.

Related Work

There is a growing consensus that the use of for-
mal methods, and the development of methodologies
based on these formalisms, could have significant ben-
efits in developing E-business systems, due to the en-
hanced rigor these methods bring. Some of these ap-
proaches have used logics to formalize and reason
about the contracts specified by the description lan-
guages [1], [2] or [3]. They have the flexibility and
expressive power of logics, but it is well known that

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 531

in general such logics are not decidable, and thus ver-
ification requires expert knowledge. Closer to our ap-
proach are formalizations based on finite state ma-
chines [4, 8] and Petri Nets [5], they allow auto-
mated verification using model checking tools; but
they differ from our work in not treating timing con-
straints. Our approach is based directly on the theory
of timed automata [7], and we use the UPPAAL tool
[10, 11, 12], although other similar tools like KRO-
NOS [13] would apply.

Overview

The paper is structured as follows. In Section 2 we
present the case study, and how it is described with
WSCDL. Translation from WS-CDL to Timed au-
tomata is described in Section 3, and then in Section 4
we show how we can use this tool to model, simulate
and verify the system behavior. Finally, conclusions
and future work are presented in Section 5.

2 Case Study

Reservation System to verify the availability of seats
(Verify Seats Availability). WhenOrder Triphas been
completed, the Traveller has the choice of accepting
or rejecting the proposed itinerary, and he can also de-
cide not to take the trip at all.

• In case he rejects the proposed itinerary, he may
submit the modifications (Change Itinerary), and
wait for a new proposal from the Travel Agent.

• In case he decides not to take the trip, he informs
the Travel Agent (Cancel Itinerary) and the pro-
cess ends.

• In case he decides to accept the proposed
itinerary (Reserve Tickets), he will provide the
Travel Agent with his Credit Card information
in order to book the itinerary.

Once the Traveller has accepted the proposed
itinerary, the Travel Agent connects with the Airline
Reservation System in order to reserve the seats (Re-
serve Seats). However, it may occur that at that mo-
ment no seat is available for a particular leg of the
trip, because some time has elapsed from the moment
in which the availability check was made. In that case
the Travel Agent is informed by the Airline Reserva-
tion System of that situation (No seats), and the Travel
Agent informs the Traveller that the itinerary is not
possible (Notify of Cancellation). When the reserva-
tion is made, the Travel Agent informs the Traveller
(Seats Reserved). This reservation is valid fr one day,

Fig. 1: Plan and Book Trip: Message Flow.

if a final confirmation has not been received before
that day is over, the seats are released, and the Travel
Agent is informed. Thus, the Traveller can now either
finalize the reservation or cancel it. If he confirms the
reservation (Book Tickets), the Travel Agent asks the
Airline Reservation System to finally book the seats
(Book Seats).

The high level flow of the messages exchanged
within the global process (which is calledPlanAnd-
BookTrip) is shown in Fig. 1.

2.1 WSCDL Description

In Figure 2 we can see a detailed piece of the WS-
CDL document describing our case study. It describes
a part of the relationship between the Airline and the
Travel Agent. The interaction determines that the
reservation is available for one day.

2.1.1 The travel Agent

In Figure 3 we can see a part of the travel agent spec-
ification. This particular piece defines an exception to
handle the reservation timeout. Overall the model for
the travel agent has the following elements:

• The main activities of the travel agent are repre-
sented by nested processes.

• The iterative processes are described by means
of while activities.

• Exceptions capture the withdrawal of the trip re-
quest or the reservation request.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 532

<interaction name="reservation&booking"

 channelVariable="travelAgentAirlineChannel"
 operation="reservation&booking"

 align="true"

 initiate="true" >
 <participate relationshipType="TravelAgentAirline"

 fromRole="TravelAgent" toRole="Airline" />

 <exchange name="reservation"

 informationType="reservation" action="request" >
 <send variable="tns:reservationOrderID" causeException="true" />

 <receive variable="tns:reservationAckID" causeException="true" />

 </exchange>
 <exchange name="booking" informationType="booking" action="respond" >

 <send variable="tns:bookingRequestID" causeException="true" />

 <receive variable="bookingAckID" causeException="true" />
 </exchange>

 <timeout time-to-complete="24:00" />

 <record name="bookingTimeout" when="timeout" causeException="true" />

 <source
 variable="AL:getVariable('tns:reservationOrderCancel', '', '')" />

 <target

 variable="TA:getVariable('tns:reservationOrderCancel', '', '')" />
 </record>

</interaction>

Fig. 2: A Part of the WS-CDL Specification

...

 <context>
 <process name ="BookSeats" instantiation="other">

 <action name="bookSeats"

 role="tns:travelAgent"
 operation="tns:TAtoAirline/bookSeats">

 </action>

 </process>

 <exception>
 <onMessage>

 <action name="ReservationTimeOut"

 role="tns:TravelAgent"
 operation="tns:TAtoAirline/AcceptCancellation">

 <correlate

 correlation="defs:reservationCorrelation"/>
 </action>

 <action name="NotifyOfTimeOut"

 role="tns:TravelAgent"

 operation="tns:TAtoTraveller/NotifyofCancellation"/>
 <fault code="tns:reservationTimedOut"/>

 </onMessage>

 ...
 </exception>

 ...

 </context>

Fig. 3: A Part of the Travel Agent Specification

• The interface uses two different correlations,
which identify the same conversation involving
the travel agent with both the traveller and the
airline reservation system.

2.1.2 Traveller

The main top-level process describing the traveller
is declared with an ”instantiation=other” at-
tribute to describe the fact that the traveller is actually
the one who starts the message exchange.

To model the possibility of cancelling the reserva-
tion or the book the tickets we use a new context with
a new exception.

We use a correlation to ensure that both the travel
agent and the airline reservation system know how to

...

<sequence>
 <context>

 <exception>

 <onTimeout property ="tnsd:expireTime"
 type="duration"

 reference="tns:ReserveSeats@end">

 <compensate name="CompensateReservation"

 transaction="seatReservation"/>
 </onTimeout>

 </exception>

 </context>
 ...

</sequence>

Fig. 4: Part of the Travel Agent Specification

fulfill the correlation requirements exhibited by the
traveller interface.

2.1.3 Airline Reservation System

The airline reservation system interface is modeled by
an interface with two top-level processes, both with
the ”instatiation=message” attribute.

The reservation of seats for each leg is defined as
a transaction defining a compensation activity which
probably will withdraw the reservations for all seats.

Fig. 4 shows the part of the specification used to
control the timeout.

3 Modelling with Timed Automata

For each component of a WS-CDL description we
have the following correspondences in timed au-
tomata:

Role : They describe the behaviour of each class
of party that we are using in the choreography.
Thus, this definition matches with the definition
of a automatontemplatein timed automata ter-
minology.

Relation type : They define the communications be-
tween two roles, and the needed channels for
these communications. In timed automata we as-
sign a new channel for each one of these chan-
nels, which are the parameters of the templates
that take part in the communication.

Participant type : They define the different parties
that participate in the choreography. In timed au-

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 533

tomata they areprocessesor automata participat-
ing in the system.

Channel types : A channel is a point of collaboration
between parties, together with the specification
of how the information is exchanged. As said
before, channels of WS-CDL correspond with
channels of timed automata.

Variables : They are easily translated, as timed au-
tomata in UPPAAL support (bounded integer)
variables, which are used to represent informa-
tion.

At this point it is necessary to define the be-
haviour of each template. This behaviour is defined by
using the information provided by the flow of chore-
ographies. Choreographies are sets of workunits or
sets of activities. Thus, activities and workunits are
the basic components of the choreographies, and they
capture the behavior of each component. Activities
can be obtained as result of a composition of other
activities, by using sequential, parallel or choice com-
positions. In terms of timed automata these operators
can be easily translated:

• Sequential composition of activities is translated
by concatenating the corresponding timed au-
tomata.

• Parallel activities are translated to the flat paral-
lel composition of the corresponding timed au-
tomata.

• Choices are translated by adding a node into
the automata which is connected with the initial
nodes of the alternatives.

Finally, time restrictions are associated in WS-
CDL with workunits and interaction activities. These
time restrictions are introduced in timed automata by
means of a local clock, guards and invariants. There-
fore, when a workunit of an activity has a time restric-
tion, we associate a guard to the edge that correspond
to the initial point of this workunit in the correspond-
ing timed automaton.

In Fig. 5 we can see the schematic presentation
of the correspondence between WS-CDL and timed
automata.

Now, we can see this correspondence for our ex-
ample. When we model our case Study by using
Timed Automata we have 3 automata, the automaton
of the traveler, the automaton of travel agent and an-
other one for the airline company.

In Fig. 6 we can see the timed automaton cor-
responding to the airline reservation system. In this

Role −→ Template

RelationType −→ Channel+

ParticipantType −→ Process+

ChannelType −→ Channel

V ariables −→ V ariables

Choreography −→ Choreography+ | Activity
Activity −→ WorkUnit | Sequence|

Paralelism| Choice
Sequence −→ Activity+

Paralelism −→ Activity+

Choice −→ Activity+

WorkUnit −→ State&Guard&Invariant

Fig. 5: Schematic view of the translation

automaton we use the clockx to control when the
reservation expires. This clock is initialized when a
reservedseat is done.

x<24

check_seats? available_seat! reserve_seat?

reserve_seat_ok!
x:=0

x<24
book_seat?

no_available_seat!

x==24
timeout!

x<24
cancel_reserve_seat?

cancel_reserve_seat_ok!

book_seat_ok!

receive_tickets!

book_seat_no!

reserve_seat_no!

Fig. 6: Timed automaton for Airline Reservation Sys-
tem.

Fig. 7 shows the timed automaton of the Travel
Agent and Fig. 8 present the automaton for the trav-
eler.

4 Simulation and Verification

Once we have constructed the timed automata de-
scribing the system, we can use the UPPAAL tool to
simulate and verify the system it.

Simulations can detect some failures in the sys-
tem design, and thus, this can be the first step to verify
the system behavior. Simulations are made by choos-
ing different transitions and delays along the system
evolution. At any moment during the simulation, you

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 534

ordertrip!

available!

cancel_itinerary?

change_itinerary?

reserve_tickets?

reserve_seat!

reserve_seat_no?

reserve_seat_ok?
timeout?

notify_timeout!

check_seats! available_seat?

no_available_seat?

no_available!

book_seat!

book_seat_ok?

receive_statement!

cancel_reserve_seat!

cancel_reserve_seat_ok?

accept_cancel!

book_seat_no?

book_ticket? cancel_reservation?

timeout?

no_reservation!

no_reservation!

Fig. 7: Timed automata for Travel agent web service.

Start

ordertrip?

available?

change_itinerary!

cancel_itinerary!

reserve_tickets!

cancel_reservation!

book_ticket!

receive_statement?

notify_timeout?

receive_tickets?

accept_cancel?

no_available?

no_reservation?

no_reservation?

Fig. 8: Timed automata for traveler.

can see the variable values and the enabled transitions.
Thus, you can choose the transition that you want to
execute. Nevertheless, you can also select the random
execution of transitions, and thus, the system evolves
by executing transitions and delays which are selected
randomly. We have some other options in the UP-
PAAL Simulator. For example, you can save simula-
tions traces that can later be used to recover a specific
execution trace. Actually, the simulation is quite flex-
ible at this point, and you can back or forward in the
sequence.

Then, with respect to our case study, our main
goal in the verification phase is to check the correct-
ness of the message flow and time-outs, taking into ac-
count the protocol definition. We have made a number
of simulations, and for all of them the system has sat-
isfied the expected behavior in terms of the message
flow between the parties.

However, simulations do not guarantee in general
the correctness of a system, as they cannot be com-
plete, so we must also use formal verification tech-

niques to complete the verification process of the sys-
tem. But before starting the automatic verification, we
must establish which are the properties that the model
must fulfill. We have divided these properties into
three classes: Safety, Liveness and Deadlocks. These
properties are

Safety Propertiesallow us to check if our model
satisfies some security restrictions. For example, if we
have two trains that have to cross the same bridge, a
security property is that both trains can not cross at the
same time the bridge, this is described by a formula
like: ∀�¬(Train1.crossing ∧ Train2.crossing) or
¬∃♦(Train1.crossing ∧ Train2.crossing).

In our case study, the main Safety properties that
our system must fulfill are the following:

• The TravelAgent always sends the itinerary on
traveler’s demand:

∀�Traveler.Itinerary ⇒
TravelAgent.sendItinerary

(1)

• The TravelAgent always changes the itinerary on
traveler’s demand:

∀�Traveler.ChangeItinerary ⇒
TravelAgent.PerformChange

(2)

• The TravelAgent always cancels the reservation
on traveler’s demand:

∀�Traveler.CancelReservation →
(TravelAgent.CancelReservtRcv∧
Airline.PerformCancel∧
Airline.Clockx < 24)

(3)

• A reservation is only available 24 hours before
performing the booking:

∀�(TravelAgent.Booking∧
Airline.ReceiveBoking∧
Airline.ClockX <= 24)

(4)

• A Traveler always receives theirs tickets and
statements after performing the payment:

∀�Traveler.PaymentPerform →
(Traveler.F inish ∧ Airline.SnddTckt∧
TravelAgent.SenddSttment)

(5)

Liveness Properties are used to check that
our model can evolve in the right order. Return-
ing to the train example, if a train approaches the
bridge, some time later, the train could cross it:
Train.approach → Train.crossed.

In our case study we can consider quite a number
of liveness properties. Then, we have just selected two
of them, which are one of the most important:

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 535

• If a Traveler sends a trip demand, some time
later, the TravelAgent will send the itineraries.
Translating it into Temporal Logic we have:

Traveler.P lanOrder −→
TravelAgent.SendItinerary

(6)

• If a Traveler makes a book within 24 hours after
the reservation, the Airline performs the book-
ing. Translating it into Temporal Logic we have:

Traveler.BookOdr ∧ Airline.ClockX

< 24 −→ Airline.PerformBook
(7)

Deadlocksare clear mistakes. We can check if
our model can deadlock by the formula:

∀�¬Deadlock (8)

5 Conclusions and Future Work

Web Services are widely used to implement a great va-
riety of applications on Internet. Many of them have
time restrictions, and then, it becomes important to
verify that they will comply with these restrictions,
even before these systems are implemented. Then,
this paper shows how formal techniques can be used
to this purpose, and particularly timed automata. We
have seen that the specifications of Web Services ap-
plications can be translated into timed automata, and
we have illustrated this translation by means of an ex-
ample, and then, we have seen how these automata can
be simulated and how we can verify the main proper-
ties of the system by using these automata.

References:

[1] H. Davulcu, M. Kifer, and I. V. Ramakr-
ishnan. CTR-S: A Logic for Specifying
Contracts in Semantic Web Services. In
Proceedings of WWW2004, pages 144–153,
May 2004.

[2] A. Paschke, J. Dietrich, and K. Kuhla.
A Logic Based SLA Management Frame-
work. In 4th Semantic Web Conference
(ISWC 2005), 2005.

[3] G. Governatori. Representing business con-
tracts in RuleML.International Journal of
Cooperative Information Systems, 14:181–
216, 2005.

[4] E. S. C. Molina-Jimenez, S. Shrivastava
and J. Warne. Run-time Monitoring and

Enforcement of Electronic Contracts.Elec-
tronic Commerce Research and Applica-
tions, 3(2), 2004.

[5] A. Daskalopulu. Model Checking Contrac-
tual Protocols. In L. Breuker and Winkels,
editors,Legal Knowledge and Information
Systems, JURIX 2000: The 13th Annual
Conference, Frontiers in Artificial Intelli-
gence and Applications Series, pages 35–
47. IOS Press, 2000.

[6] Nickolas Kavantzas et al. Web
Service Choreography Descrip-
tion Language (WSCDL) 1.0. In
http://www.w3.org/TR/ws-cdl-10/

[7] R. Alur and D. Dill, Automata for model-
ing real–time systems, In Proceedings of
the 17th International Colloquium on Au-
tomata, Languages and Programming, vol-
ume 443, Editors. Springer–Verlag, 1990.

[8] H. Foster, S. Uchitel, J. Magee, J. Kramer,
Leveraging Eclipse for Integrated Model-
Based Engineering of Web Service Com-
positions, In ETX2005 Workshop at OOP-
SLA05, San Diego, CA, October 2005.

[9] Edmund M. Clarke and Jr. and Orna Grum-
berg and Doron A. Peled,Model Checking,
MIT Press, 1999.

[10] K. Larsen and P. Pettersson and Wang Yi,
UPPAAL in a Nutshell, Int. Journal on Soft-
ware Tools for Technology Transfer, Edi-
tors. Springer–Verlag vol.1, 1997.

[11] G. Diaz, F. Cuartero, V. Valero and F.
Pelayo,Automatic Verification of the TLS
Handshake Protocol, In proceedings of the
2004 ACM Symposium on Applied Com-
puting.

[12] G. Diaz, K.G. Larsen, J. Pardo, F. Cuar-
tero and V. Valero,An approach to handle
Real Time and Probabilistic behaviors in e-
commerce: Validating the SET Protocol, In
proceedings of the 2005 ACM Symposium
on Applied Computing.

[13] M. Bozga, C. Daws, O. Maler, A. Oliv-
ero, S. Tripakis and S. Yovine,Kronos:
A model-checking tool for real-time sys-
tems, In Proc. 1998 Computer-Aided Veri-
fication, CAV’98, Vancouver, Canada, June
1998. Lecture Notes in Computer Science
1427, Springer-Verlag.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 536

