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Abstract: - Testing is a simple and direct way for making software more reliable. Many specification-based 
software testing mechanisms utilize test points generated based on fault hierarchies, classes of which are 
categorized by common faults frequently introduced during software implementation. The testing method is 
effective to identify Boolean faults but has a severe drawback, which is not applicable to testing software with 
relational operators such as “>” or “!=”. This paper carefully investigates the characteristic of relational operator 
faults and proposes a unique way to find relational operator reference faults in software. Its feasibility is also 
shown by applying the proposed method to a HVAC (Heating/Ventilating/Air-Conditioning) system of 
commercial vehicle. 
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1   Introduction 
Testing is an important part for improving the quality 
of software and takes a key role for improving the 
quality as softwares include more diverse functions 
both de-signers and customers want. Testing becomes 
more critical when faults may cause fatal results like 
brake control failure in vehicle control mechanism. In 
general, software programs include various 
expressions to implement their functionalities. 
Boolean expression is one of the basic expressions 
frequently used in software. Most software 
programming languages from machine-level to high 
level languages like C, C++ or JAVA define and use 
Boolean expressions to implement such requirements. 
Moreover, in specification-based software testing 
methodology, Boolean expressions including 
relational expressions are frequently imported in 
specification models which describe the functionality 
of software. Thus to improve software reliability, it is 
inevitable to test Boolean expressions in software. 
Many studies have been done for identifying faults in 
Boolean expressions, classifying the faults frequently 
presented in Boolean expressions and generating test 
points to detect the faults based on the classification. 

Authors of [3] and [6] proposed fault hierarchies for 
classifying Boolean faults such as Expression 
Negation Fault, Variable Negation Fault, Variable 
Reference Fault and Missing Condition Fault, based 

on fault detection conditions. They proved that the test 
points to detect faults in a higher class can detect faults 
in lower classes. Weyuker EJ and Goradia T, Singh A 
[2] suggested test vector generating strategies that can 
successfully detect the faults in Boolean expressions 
embedded in softwares using Unique True Points 
(UTP) and Near False Points (NFP). M. F. Lau and Y. 
T. Yu [4],[8] revealed the relationship between eight 
Boolean fault classes. And T. Y. Chen and M. F. Lau 
proposed test point generation strategies, CUTPNFP, 
MUTP and MNFP, based on the fault hierarchy in 
[8],[9]. The test points can efficiently detect Literal 
Reference Faults (LRF) and Literal Insertion Faults 
(LIF) in irredundant Disjunctive Normal Form (DNF) 
of Boolean expressions. Vadim Okun, Paul E. Black 
and Yaacov Yesha [7] also proposed a strategy to 
detect the faults of expressions in arbitrary form as 
well as DNF. 

Few previous works have suggested solutions to 
detect faults in Boolean expressions with relational 
operators such as “greater than” or “not equal”. 
Considering that most practical softwares contain 
many relational operators, it is important to have 
strategies to detect the faults introduced by relational 
operators.  

This paper proposes a strategy to find Relational 
Operator Reference Faults (RORF) in Boolean 
expressions. The proposed strategy also present a way 
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to generate test points, based on UTP and NFP as in 
[2] and detect RORF using the test points. Since the 
proposed strategy uses UTP and NFP as CUTPNFP, 
MUTP and MNFP do, the extra overhead to generate 
test points is not significant and the number of 
additional test points is not large either. 

In the Second section, the notations to be used 
throughout this paper and the previous works are 
summarized. Third section defines relational operator 
reference fault that is the problem we try to solve in the 
paper. The method to detect RORF is suggested in 
Section four. How the suggested method can be 
applied to real systems is shown through a small 
sample system in the section. The final section wraps 
up this paper. 
 
 
2   Notations and previous works 
This section summarizes the notations to be utilized in 
the paper. As mentioned before, we focus on software 
with Boolean expressions and thus the notations we 
will summarize are all about Boolean expressions. A 
variable represents an unknown quantity that has the 
potential to change. A literal is an occurrence of a 
Boolean variable or its negation in an expression. A 
Boolean variable is expressed as either positive or 
negative literal. For example, a Boolean expression 

cabaS ⋅+⋅=  has three Boolean variables, a, b, c. 
And a  and a  are positive literal and negative literal. 
Disjunctive Normal Form (DNF) is one of standard 
Boolean expressions. What an expression is in DNF 
means that the expression is an OR sequence of 
conjunctions of literals. For example, an expression S 
= p1 + p2… + pm-1 + pm is one in DNF where pi = x1 ⋅ x2 
⋅ …. ⋅ xn and xi is a literal, where n ≥  1. In the case, we 
say S has m terms. DNF expression may not be unique 
for an expression. An irredundant DNF expression is 
one that if any one of literals in a Boolean expression 
is removed or modified, the meaning of expression is 
changed. A Boolean expression has a unique 
irredundant DNF [5] and a Boolean expression can be 
translated into an equivalent Boolean expression in 
irredundant disjunctive normal form.[10][11] 

A set of test points for S is an assignment of values 
to variables that make S ‘True’ or ‘False’ and are used 
to verify whether S is correct or wrong. Test points 
that make S true are called True Points (TP) and ones 
that make S false are called False Points (FP). If a TP 
makes the ith term of an Boolean expression true but all 
other terms except the ith term false, we call the TP a 
Unique True Point (UTP). The meaning of UTPi(S) is 

combination(s) of literals that makes pi true but all 
other terms except pj  false in S. The number of literal 
combinations of UTPi(S) may be zero or multiple if S 
is of DNF. For example, for S = abc + de, UTP1(S) = 
{(11100), (11101), (11110)}. Overlapping True 
Points (OTP) are TP’s except UTP’s. 

False points (FP) are test points that make S false. 
Near False Points, NFPi,j(S) are defined as false points 
such that only the ith term becomes true but all other 
terms except the ith term stay false when the jth literal 
of the ith term is negated. For example, NFP1,2(S) for a 
system, S = abc + de, are {(10100), (10101), (10110)}. 
Remaining False Point (RFP) are FP’s except NFP’s. 

Man F. Lau and Yuen T. Yu of [8] addressed that the 
typical faults introduced by programmers during 
programming step are ‘incorrect operators or 
operands’, ‘missing extra conditions and paths’ and 
‘incorrect control predicates’. And they classified the 
faults in views of ‘omission’, ‘insertion’ and ‘incorrect 
reference’ of Boolean operands or operators. Kuhn [3], 
Chan and Lau [5] and Tsuchiya and Kikuno[6] 
similarly classified the faults. Lau and Yu classified 
faults of Boolean expressions in DNF into eight 
classes as follows; 

 
1) Express Negation Fault (ENF):  

Fault introduced by negating S or multiple terms  
2) Term Negation Fault (TNF):  

Fault introduced by negating a term 
3) Literal Negation Fault (LNF):  

Fault introduced by negating a literal of a term 
4) Term Omission Fault (TOF):  

Fault introduced by omitting a term 
5) Operator Reference Fault (ORF):  

Fault introduced by exchanging ‘+’ with ‘·’  
or vice versa. 

6) Literal Omission Fault (LOF):  
Fault introduced by omitting a literal of a term 

7) Literal Insertion Fault (LIF):  
Fault introduced by inserting a literal into a term 

8) Literal Reference Fault (LRF):  
Fault introduced by replacing a literal of a term  
with a different one 

 
Man F. Lau and Yuen T. Yu showed that the eight 

fault classes can construct a fault hierarchy. According 
to the hierarchy, the faults in higher classes can be 
detected by the test points by which the faults in lower 
fault classes can be detected. For example, if the faults 
belonging to LIF are detected by a test point set, the 
test point set can also detect the faults in TOF, which is 
a higher fault class. A test point set for detecting the 
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faults in LRF can also detect the faults in LNF, which 
is a higher fault class than LRF. 

In paper [5], T. Y. Chen and M. F. Lau proved that 
UTP and NFP can detect all faults in the eight fault 
classes if a software consists of Boolean variables and 
Boolean operators and is of irredundant DNF. They 
proposed a method to produce test points for finding 
faults in the lowest classes of hierarchy: LIF, LRF and 
LOF. Since the test points can detect the faults in the 
lowest classes, they can also find all faults in higher 
classes. 

But unfortunately the fault class hierarchy and the 
test point generation method are not applicable to 
software with relational operators. Meanwhile many 
real softwares include various relational operators. 
Thus for the hierarchy and the test point generation 
method to be more practical, it is inevitable to extend 
them to be able to deal with relational operators. 
 
 
3   Presenting relational expression 
The expression of relational operations to be dealt in 
this paper is “var1 op var2”, where var1 is a variable, 
op is one of relational operators among { > , ≥ , < , ≤ , 
= , ≠ }, and var2 is another variable. Here, what we 
mean a Relational Operator Reference Fault (RORF) 
of a Boolean expression, S, is the fault by replacing a 
relational operator in S with a different relational 
operator. 

A relational expression “var1 op var2”can be 
considered as a literal in the view that “var1 op var2” 
returns ‘True’ or ‘False’ when substituting var1 and 
var2 with proper test points as a literal does. For 
finding TP and FP and RORF, we will use modified 
software expression Smod instead of S, where Smod is 
exactly same as S except replacing a relational 
expression in S with a literal that is not included in the 
literal list of S. 

TP and FP of Smod are found by the exactly same 
manner for those of S. Assume we have a Boolean 
expression S = a · (k > 5) + c. If relational operator (k > 
5) is replaced with (arbitrarily chosen) ‘b’, the 
modified system Smod is expressed as Smod = a · b + c. 
The true points of Smod are (1,1,1), (1,1,0), (0,0,1), 
(0,1,1) and (1,0,1). Here, the input ‘1’ of ‘b’ 
corresponds to k value greater than 5 and ‘0’ to k 
smaller than or equal to 5. Table 1 and 2 show the TP 
and FP of S and Smod. 

 
 
 

True points of Smod True points of S 
(1,1,1) (1, k | k > 5, 1) 
(1,1,0) (1, k | k > 5, 0) 
(0,0,1) (0, k | k ≤ 5, 1) 
(0,1,1) (0, k | k > 5, 1) 
(1,0,1) (1, k | k ≤ 5, 1) 

 
Table 1. True points of S and Smod 

 
False points of Smod False points of S 

(0,0,0) (0, k | k ≤ 5, 0) 
(1,0,0) (1, k | k ≤ 5, 0) 
(0,1,0) (0, k | k > 5, 0) 

 
Table 2. False points of S and Smod 

 
The authors of [5] showed that if a software S is of 

irredundant DNF, there are at least one UTP(S) and 
NFP(S). If S is of irredundant DNF, then Smod is also of 
irredundant DNF. Thus Smod has at least one 
UTPi(Smod) and NFPi,j(Smod). An expression with a 
literal replaced for a relation expression has infinite 
number of NFPI,j(S) and UTPi(S) since there infinite 
number of values that make S true or false. 

 
 
4 Strategy for detecting RORF  

(MUNC algorithm) 
In this section, a strategy called Multiple Unique true 
points and Near false points Combination (MUNC) is 
proposed for detecting RORF in Boolean expressions 
that are of irredundant DNF and contain relational 
expressions. A blower speed control module in a 
HVAC system is utilized as a test system for verifying 
the feasibility of proposed strategy.  
 
4.1 MUNC algorithm 
Let S = p1 + … + pi + … + pm be a Boolean expression 
of irredundant DNF with relational expressions. The 
relational operation we are dealing with is “var1 op 
var2”. Here we assume that op is one of six relational 
operators, which are ‘>’ , ‘=’ , ‘<’, ‘≥’ , ‘≠’ , ‘≤’. Let a 
term pi include a relational expression “var1 op var2” 
at the jth literal position of pi term. That is, pi = x1 ·x2 … 
xj-1 · (var1 op var2) · xj+1… xm, where 1 ≤ j ≤ m. After 
substituting the jth relational expression with a literal x 
that is not included in the literal list of S, we have the 
modified S, Smod = p1 + … + qi + … + pm, where qi = x1 
·  x2 … xj-1 ·  x ·  xj+1… xm. x has either ‘True’ or 
‘False’ depending on the non-algebraic values of var1 
and var2 in S. If there are multiple terms including 
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relational operations in S and the relational operations 
are independent of each other, Smod can be driven from 
S in the same manner.  

Since Smod is an Boolean expression in irredundant 
DNF form, we can find UTPi(Smod) and NFPi,j(Smod) 
[5]. By replacing x with the corresponding values of 
var1 and var2, we can also find UTPi(S) and NFPi,j(S). 
If it is possible to identify op in the term by using the 
values of var1 and var2, UTPi(S) and NFPi,j(S) can be 
used to find both the typical eight types of faults [8] 
and RORF in Boolean expressions. 

 
Input values    

of var1 
Relational 
Operation              

Var1 = 
var2 – α

var1 = 
var2 

var1= 
var2+ α

var1 > var2 False False True 
var1 ≤ var2 True True False 
var1 = var2 False True False 
var1 ≠ var2 True False True 
var1 < var2 True False False 
var1 ≥ var2 False True True 

 
Table 3. Test results in relational operations 

 
Table 3 illustrates that each of the relational 

operations with the six relational operators returns a 
unique combination of ‘True” and ‘False’ by 
substituting var1 with var2- α, var2 and var2+ α, 
respectively in “var1 op var2” in S, where α is an 
arbitrary positive constant. For example, if “var1 = 
var2” (in the second row) is correctly implemented, 
the expression must return “False”, “True” and “True” 
when var1 is substituted with var2- α, var2 and var2+ 
α, respectively.  The return value combination is 
different from other return values. That is, by 
substituting var1 values with var2- α, var2 and var2+ 
α, it is possible to identify op in the relational 
operation. 

If the relational operator {one of ‘>’ , ‘=’ , ‘<’, ‘≥’ , 
‘≠’ , ‘≤’} hidden in literal x in Smod is replaced with a 
different one, a RORF is introduced. The RORF can 
be detected by the test points in the following four 
Summaries. 

 
Summary 1. If either ‘>’ or ‘<’ is replaced with a 

different one out of {‘>’, ‘<’, ‘=’ , ‘≥’ , ‘≠’ , ‘≤’}, then 
the test points to detect the RORF are set of {t11, t12, 
t13} such that “t11 ∈ UTPi(S)”, “t12 ∈ NFPi, j(S), where 
var1 = var2(i.e. var1 and var2 have the same input 
value) ”, “t13 ∈ NFPi, j(S), where t13 ≠ t12”. 

 
Proof) By the definition of UTP and NFP, the test 

point set, “t11 ∈ UTPi(S)”, “t12 ∈ NFPi, j(S), where 
var1 = var2” and “t13 ∈ NFPi, j(S), where t13 ≠ t12” 
satisfy the input values of var1 of the first row (‘var1 
> var2’), which are ‘var1 = var2 + α’, ‘var1 = var2’ 
and ‘var1 = var2 – α’, respectively in Table 3. And 
also the test point sets satisfy the input conditions of 
the fifth row (‘var1 < var2’), which are ‘var1 = var2 – 
α’, ‘var1 = var2’ and ‘var1 = var2 + α’.  

Meanwhile, var1 < var2 and var1 > var2 return 
outputs (‘false’, ‘false’, ‘true’) and (‘true’, ‘false’, 
‘false’) to input values of ‘var1 = var2 – α’, ‘var1 = 
var2’ and ‘var1 = var2 + α’. And the outputs are 
different from any other output combinations in Table 
3. It means that the input values of var1 can identify 
‘>’ and ‘<’ from other relational operators.  

Consequently, test points sets “t11 ∈ UTPi(S)”, “t12 

∈ NFPi, j(S), where var1 = var2” and “t13 ∈ NFPi, j(S), 
where t13 ≠ t12” can detect the RORF introduced by 
replacing either ‘>’ or ‘<’ with a different one out of 
{‘>’, ‘<’, ‘=’ , ‘≥’ , ‘≠’ , ‘≤’}. 

 
Summary 2. If either ‘≥’ or ‘≤’ is replaced with a 

different one out of {‘>’, ‘<’, ‘=’ , ‘≥’ , ‘≠’ , ‘≤’}, then 
the test points to detect the RORF are set of {t21, t22, 
t23} such that “t21 ∈ UTPi(S)”, “t22 ∈ UTPi(S), where 
var1 = var2 and t22 ≠ t21”, “t23 ∈ NFPi, j(S)”. 

 
Proof) Same as Summary 1 except test point sets.  
 
Summary 3. If either ‘=’ is replaced with a different 

one out of {‘>’, ‘<’,  ‘≥’ , ‘≠’ , ‘≤’}, then the test points 
to detect the RORF are set of {t31, t32, t33} such that “t31 

∈ UTPi(S), where  var1 = var2 “t32 ∈ NFPi,j, (S), 
where  var1 > var2”, “t33 ∈ NFPi, j(S), where var1 < 
var2”. 

 
Proof) Same as Summary 1 except test point sets.  
 
Summary 4. If either ‘≠’ is replaced with a different 

one out of {‘>’, ‘<’, ‘≥’ , ‘≠’ , ‘≤’}, then the test points 
to detect this RORF are set of {t41, t42, t43} such that 
“t41 ∈ UTPi(S), where var1 > var2”, “t42 ∈ UTPi,(S), 
where var1 < var2”, “t43 ∈ NFPi, j(S), where var1 = 
var2”. 

 
Proof) Same as Summary 1 except test point sets.  
 
The number of test points for MUNC to detect a 
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RORF in expression with n Boolean variables and m 
terms with at most r relational expressions in each 
term is bounded by 3mr. This is because each 
relational expression needs either (two UTPi(S) and 
one NFPij(S)) or (one UTPi(S) and two NFPi,j(S)). And 
to find either UTPi(S) or NFPij(S), we need mr test 
points in maximum.  

When the proposed MUNC strategy is used along 
with MUTP, the test point generation strategy 
proposed by Chen to detect RORF, the extra test 
points required to detect RORF is 2mr in maximum 
since MUTP has to generate mr test points for UTPi(S). 
MUNC needs extra mr test points when it is used 
along with CUTPNFP strategy that generates 2mr test 
points for UTPi(S) and NFPi,j(S). In the case that 
MUNC is used with MNFP, it needs to generate 2mr 
test points since MNFP requires mr test points for 
NFPi,j(S). 

MUTP, CUTPNFP and MNFP have to be applied 
together to detect the typical eight types of faults in 
Boolean expression. For them, 2mr test points are 
required. Thus the maximum number of required test 
points needed for detecting RORF by the proposed 
MUNC is bound by mr when they are used to detect 
the typical eight types of faults and RORF. 
 
4.2 Applying the proposed algorithm to a 

simple blower speed control module 
Here is a simple example system to show how efficiently 
the proposed algorithm works. A simple work model of 
‘Blower Speed Control Module’ in a ‘HVAC system’ for 
commercial vehicle is depicted in Fig 1. The state diagram 
illustrates the state transition from a state that blower speed 
is fast to another state that blower speed is slow. 

 

 
 

Fig. 1. Blower speed state transition in HVAC system 
 
Ignited is a flag to indicate vehicle ignition state and 

Ignited = ‘True’ presents that the vehicle engine is 
running. A/C_on is also a flag to indicate operating 
state of air-conditioner and A/C_on = ‘True’ presents 
that the air conditioner is running. Temp_sensor has a 
numerical number to indicate the temperature of 
ambient air in degree (℃). 

At the condition that a vehicle is ignited, air 
conditioner is on and the vehicle temperature is below 
12 degree, the blower speed goes from fast to slow. 
The model can be coded as follows; 

 
 If (Current Blower Speed = Fast){ 

If (Ignited & (Temp_Sensor < 12) & A/C_on){ 
  New Blower Speed = Slow 
}} 
 
The above specification from fast blower speed to 

slow blower speed, S, can be written in Boolean form 
expression: S = Ignited · (Temp_Sensor < 12) · A/C_on. 
Let substitute variables ‘Ignited’, ‘Temp_Sensor < 12’ 
and ‘A/C_on’ with ‘a’, ‘b’ and ‘c’ for convenience. 
Note that relational expression ‘Temp_Sensor < 12’ 
has been substituted by a literal ‘b’. Then Smod 
becomes Smod = a · b · c. 

In the case that a RORF is introduced in S by 
accidentally replacing ‘‘Temp_Sensor < 12” with 
‘‘Temp_Sensor > 12”, (that is, S has been actually 
implemented as Simp = Ignited · (Temp_Sensor < 12) · 
A/C_on and Smod = a · b′ · c), the RORF can be found by 
a test point ‘t11 in UTP1(S)’, a test point ‘t12 in NFP1, 

2(S), where Temp_Sensor = 12’, and a test point ‘t13 in 
NFP1, 2(S), where t12 ≠ t13’ according to Summary 1. 
Let choose t11 = (1, 11, 1), t12 = (1, 12, 1) and t13 = (1, 
13, 1). Then S(t11), S(t12) and S(t13) should be ‘True’, 
‘False’ and ‘False’. But they force the implemented 
system to return ‘False’, ‘False’ and ‘True’. The test 
outputs in implemented system are different from 
what should be. Consequently, we can say that there is 
a relational fault in the implemented system. The 
position where the fault appears can be found by UTP 
and NFP. Since the (incorrectly) implemented S has a 
fault with UTP1(Simp) and NFP1,2(Simp), we know that 
the fault occurs at the 2nd literal of the 1st term. The 
literal corresponds to a relational operation is 
‘Temp_Sensor < 12’. 

 
 

5 Conclusion 
We proposed a strategy to overcome the drawback of 
method by T. Y. Chen and M. F. Lau. Their method 
only detects the typical eight faults of software with 
only Boolean operators and Boolean variables. Our 
proposed method can detect relational operator 
reference faults, which are easily observed in many 
real applications. The proposed strategy identifies 
Relational Operator Reference Faults through unique 
combinations of outputs produced by relational 
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operators. The feasibility of the proposed strategy is 
shown in a small application. The proposed method 
can be used to detect RORF as well as the faults in the 
typical eight fault classes frequently shown in 
software when it is applied to software with other well 
known test point generation strategies such as MUTP, 
CUPNFP and MUTP. 

Based on the previous works and our proposed 
strategy, the further work has been progressed. The 
future work includes finding methods to detect other 
software faults such as more complicated relational 
expression faults, associative shift faults and stuck-at 
faults. 
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