
Extending the fault classification hierarchy for
software with relational operators

Jeonghyun Kim1, Kyunghee Choi1 and Gihyun Jung2

1Graduate School of Information and Communication, 2School of Electrics Engineering
Ajou University

430, San-hak hall, Ajou university, suwon-city
South Korea

Abstract: - Testing is a simple and direct way for making software more reliable. Many specification-based
software testing mechanisms utilize test points generated based on fault hierarchies, classes of which are
categorized by common faults frequently introduced during software implementation. The testing method is
effective to identify Boolean faults but has a severe drawback, which is not applicable to testing software with
relational operators such as “>” or “!=”. This paper carefully investigates the characteristic of relational operator
faults and proposes a unique way to find relational operator reference faults in software. Its feasibility is also
shown by applying the proposed method to a HVAC (Heating/Ventilating/Air-Conditioning) system of
commercial vehicle.

Key-Words: - Specification-based test, Boolean fault, relational operator reference fault. Fault classes hierarchy

1 Introduction
Testing is an important part for improving the quality
of software and takes a key role for improving the
quality as softwares include more diverse functions
both de-signers and customers want. Testing becomes
more critical when faults may cause fatal results like
brake control failure in vehicle control mechanism. In
general, software programs include various
expressions to implement their functionalities.
Boolean expression is one of the basic expressions
frequently used in software. Most software
programming languages from machine-level to high
level languages like C, C++ or JAVA define and use
Boolean expressions to implement such requirements.
Moreover, in specification-based software testing
methodology, Boolean expressions including
relational expressions are frequently imported in
specification models which describe the functionality
of software. Thus to improve software reliability, it is
inevitable to test Boolean expressions in software.
Many studies have been done for identifying faults in
Boolean expressions, classifying the faults frequently
presented in Boolean expressions and generating test
points to detect the faults based on the classification.

Authors of [3] and [6] proposed fault hierarchies for
classifying Boolean faults such as Expression
Negation Fault, Variable Negation Fault, Variable
Reference Fault and Missing Condition Fault, based

on fault detection conditions. They proved that the test
points to detect faults in a higher class can detect faults
in lower classes. Weyuker EJ and Goradia T, Singh A
[2] suggested test vector generating strategies that can
successfully detect the faults in Boolean expressions
embedded in softwares using Unique True Points
(UTP) and Near False Points (NFP). M. F. Lau and Y.
T. Yu [4],[8] revealed the relationship between eight
Boolean fault classes. And T. Y. Chen and M. F. Lau
proposed test point generation strategies, CUTPNFP,
MUTP and MNFP, based on the fault hierarchy in
[8],[9]. The test points can efficiently detect Literal
Reference Faults (LRF) and Literal Insertion Faults
(LIF) in irredundant Disjunctive Normal Form (DNF)
of Boolean expressions. Vadim Okun, Paul E. Black
and Yaacov Yesha [7] also proposed a strategy to
detect the faults of expressions in arbitrary form as
well as DNF.

Few previous works have suggested solutions to
detect faults in Boolean expressions with relational
operators such as “greater than” or “not equal”.
Considering that most practical softwares contain
many relational operators, it is important to have
strategies to detect the faults introduced by relational
operators.

This paper proposes a strategy to find Relational
Operator Reference Faults (RORF) in Boolean
expressions. The proposed strategy also present a way

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 231

to generate test points, based on UTP and NFP as in
[2] and detect RORF using the test points. Since the
proposed strategy uses UTP and NFP as CUTPNFP,
MUTP and MNFP do, the extra overhead to generate
test points is not significant and the number of
additional test points is not large either.

In the Second section, the notations to be used
throughout this paper and the previous works are
summarized. Third section defines relational operator
reference fault that is the problem we try to solve in the
paper. The method to detect RORF is suggested in
Section four. How the suggested method can be
applied to real systems is shown through a small
sample system in the section. The final section wraps
up this paper.

2 Notations and previous works
This section summarizes the notations to be utilized in
the paper. As mentioned before, we focus on software
with Boolean expressions and thus the notations we
will summarize are all about Boolean expressions. A
variable represents an unknown quantity that has the
potential to change. A literal is an occurrence of a
Boolean variable or its negation in an expression. A
Boolean variable is expressed as either positive or
negative literal. For example, a Boolean expression

cabaS ⋅+⋅= has three Boolean variables, a, b, c.
And a and a are positive literal and negative literal.
Disjunctive Normal Form (DNF) is one of standard
Boolean expressions. What an expression is in DNF
means that the expression is an OR sequence of
conjunctions of literals. For example, an expression S
= p1 + p2… + pm-1 + pm is one in DNF where pi = x1 ⋅ x2
⋅ …. ⋅ xn and xi is a literal, where n ≥ 1. In the case, we
say S has m terms. DNF expression may not be unique
for an expression. An irredundant DNF expression is
one that if any one of literals in a Boolean expression
is removed or modified, the meaning of expression is
changed. A Boolean expression has a unique
irredundant DNF [5] and a Boolean expression can be
translated into an equivalent Boolean expression in
irredundant disjunctive normal form.[10][11]

A set of test points for S is an assignment of values
to variables that make S ‘True’ or ‘False’ and are used
to verify whether S is correct or wrong. Test points
that make S true are called True Points (TP) and ones
that make S false are called False Points (FP). If a TP
makes the ith term of an Boolean expression true but all
other terms except the ith term false, we call the TP a
Unique True Point (UTP). The meaning of UTPi(S) is

combination(s) of literals that makes pi true but all
other terms except pj false in S. The number of literal
combinations of UTPi(S) may be zero or multiple if S
is of DNF. For example, for S = abc + de, UTP1(S) =
{(11100), (11101), (11110)}. Overlapping True
Points (OTP) are TP’s except UTP’s.

False points (FP) are test points that make S false.
Near False Points, NFPi,j(S) are defined as false points
such that only the ith term becomes true but all other
terms except the ith term stay false when the jth literal
of the ith term is negated. For example, NFP1,2(S) for a
system, S = abc + de, are {(10100), (10101), (10110)}.
Remaining False Point (RFP) are FP’s except NFP’s.

Man F. Lau and Yuen T. Yu of [8] addressed that the
typical faults introduced by programmers during
programming step are ‘incorrect operators or
operands’, ‘missing extra conditions and paths’ and
‘incorrect control predicates’. And they classified the
faults in views of ‘omission’, ‘insertion’ and ‘incorrect
reference’ of Boolean operands or operators. Kuhn [3],
Chan and Lau [5] and Tsuchiya and Kikuno[6]
similarly classified the faults. Lau and Yu classified
faults of Boolean expressions in DNF into eight
classes as follows;

1) Express Negation Fault (ENF):

Fault introduced by negating S or multiple terms
2) Term Negation Fault (TNF):

Fault introduced by negating a term
3) Literal Negation Fault (LNF):

Fault introduced by negating a literal of a term
4) Term Omission Fault (TOF):

Fault introduced by omitting a term
5) Operator Reference Fault (ORF):

Fault introduced by exchanging ‘+’ with ‘·’
or vice versa.

6) Literal Omission Fault (LOF):
Fault introduced by omitting a literal of a term

7) Literal Insertion Fault (LIF):
Fault introduced by inserting a literal into a term

8) Literal Reference Fault (LRF):
Fault introduced by replacing a literal of a term
with a different one

Man F. Lau and Yuen T. Yu showed that the eight

fault classes can construct a fault hierarchy. According
to the hierarchy, the faults in higher classes can be
detected by the test points by which the faults in lower
fault classes can be detected. For example, if the faults
belonging to LIF are detected by a test point set, the
test point set can also detect the faults in TOF, which is
a higher fault class. A test point set for detecting the

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 232

faults in LRF can also detect the faults in LNF, which
is a higher fault class than LRF.

In paper [5], T. Y. Chen and M. F. Lau proved that
UTP and NFP can detect all faults in the eight fault
classes if a software consists of Boolean variables and
Boolean operators and is of irredundant DNF. They
proposed a method to produce test points for finding
faults in the lowest classes of hierarchy: LIF, LRF and
LOF. Since the test points can detect the faults in the
lowest classes, they can also find all faults in higher
classes.

But unfortunately the fault class hierarchy and the
test point generation method are not applicable to
software with relational operators. Meanwhile many
real softwares include various relational operators.
Thus for the hierarchy and the test point generation
method to be more practical, it is inevitable to extend
them to be able to deal with relational operators.

3 Presenting relational expression
The expression of relational operations to be dealt in
this paper is “var1 op var2”, where var1 is a variable,
op is one of relational operators among { > , ≥ , < , ≤ ,
= , ≠ }, and var2 is another variable. Here, what we
mean a Relational Operator Reference Fault (RORF)
of a Boolean expression, S, is the fault by replacing a
relational operator in S with a different relational
operator.

A relational expression “var1 op var2”can be
considered as a literal in the view that “var1 op var2”
returns ‘True’ or ‘False’ when substituting var1 and
var2 with proper test points as a literal does. For
finding TP and FP and RORF, we will use modified
software expression Smod instead of S, where Smod is
exactly same as S except replacing a relational
expression in S with a literal that is not included in the
literal list of S.

TP and FP of Smod are found by the exactly same
manner for those of S. Assume we have a Boolean
expression S = a · (k > 5) + c. If relational operator (k >
5) is replaced with (arbitrarily chosen) ‘b’, the
modified system Smod is expressed as Smod = a · b + c.
The true points of Smod are (1,1,1), (1,1,0), (0,0,1),
(0,1,1) and (1,0,1). Here, the input ‘1’ of ‘b’
corresponds to k value greater than 5 and ‘0’ to k
smaller than or equal to 5. Table 1 and 2 show the TP
and FP of S and Smod.

True points of Smod True points of S
(1,1,1) (1, k | k > 5, 1)
(1,1,0) (1, k | k > 5, 0)
(0,0,1) (0, k | k ≤ 5, 1)
(0,1,1) (0, k | k > 5, 1)
(1,0,1) (1, k | k ≤ 5, 1)

Table 1. True points of S and Smod

False points of Smod False points of S

(0,0,0) (0, k | k ≤ 5, 0)
(1,0,0) (1, k | k ≤ 5, 0)
(0,1,0) (0, k | k > 5, 0)

Table 2. False points of S and Smod

The authors of [5] showed that if a software S is of

irredundant DNF, there are at least one UTP(S) and
NFP(S). If S is of irredundant DNF, then Smod is also of
irredundant DNF. Thus Smod has at least one
UTPi(Smod) and NFPi,j(Smod). An expression with a
literal replaced for a relation expression has infinite
number of NFPI,j(S) and UTPi(S) since there infinite
number of values that make S true or false.

4 Strategy for detecting RORF

(MUNC algorithm)
In this section, a strategy called Multiple Unique true
points and Near false points Combination (MUNC) is
proposed for detecting RORF in Boolean expressions
that are of irredundant DNF and contain relational
expressions. A blower speed control module in a
HVAC system is utilized as a test system for verifying
the feasibility of proposed strategy.

4.1 MUNC algorithm
Let S = p1 + … + pi + … + pm be a Boolean expression
of irredundant DNF with relational expressions. The
relational operation we are dealing with is “var1 op
var2”. Here we assume that op is one of six relational
operators, which are ‘>’ , ‘=’ , ‘<’, ‘≥’ , ‘≠’ , ‘≤’. Let a
term pi include a relational expression “var1 op var2”
at the jth literal position of pi term. That is, pi = x1 ·x2 …
xj-1 · (var1 op var2) · xj+1… xm, where 1 ≤ j ≤ m. After
substituting the jth relational expression with a literal x
that is not included in the literal list of S, we have the
modified S, Smod = p1 + … + qi + … + pm, where qi = x1
· x2 … xj-1 · x · xj+1… xm. x has either ‘True’ or
‘False’ depending on the non-algebraic values of var1
and var2 in S. If there are multiple terms including

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 233

relational operations in S and the relational operations
are independent of each other, Smod can be driven from
S in the same manner.

Since Smod is an Boolean expression in irredundant
DNF form, we can find UTPi(Smod) and NFPi,j(Smod)
[5]. By replacing x with the corresponding values of
var1 and var2, we can also find UTPi(S) and NFPi,j(S).
If it is possible to identify op in the term by using the
values of var1 and var2, UTPi(S) and NFPi,j(S) can be
used to find both the typical eight types of faults [8]
and RORF in Boolean expressions.

Input values

of var1
Relational
Operation

Var1 =
var2 – α

var1 =
var2

var1=
var2+ α

var1 > var2 False False True
var1 ≤ var2 True True False
var1 = var2 False True False
var1 ≠ var2 True False True
var1 < var2 True False False
var1 ≥ var2 False True True

Table 3. Test results in relational operations

Table 3 illustrates that each of the relational

operations with the six relational operators returns a
unique combination of ‘True” and ‘False’ by
substituting var1 with var2- α, var2 and var2+ α,
respectively in “var1 op var2” in S, where α is an
arbitrary positive constant. For example, if “var1 =
var2” (in the second row) is correctly implemented,
the expression must return “False”, “True” and “True”
when var1 is substituted with var2- α, var2 and var2+
α, respectively. The return value combination is
different from other return values. That is, by
substituting var1 values with var2- α, var2 and var2+
α, it is possible to identify op in the relational
operation.

If the relational operator {one of ‘>’ , ‘=’ , ‘<’, ‘≥’ ,
‘≠’ , ‘≤’} hidden in literal x in Smod is replaced with a
different one, a RORF is introduced. The RORF can
be detected by the test points in the following four
Summaries.

Summary 1. If either ‘>’ or ‘<’ is replaced with a

different one out of {‘>’, ‘<’, ‘=’ , ‘≥’ , ‘≠’ , ‘≤’}, then
the test points to detect the RORF are set of {t11, t12,
t13} such that “t11 ∈ UTPi(S)”, “t12 ∈ NFPi, j(S), where
var1 = var2(i.e. var1 and var2 have the same input
value) ”, “t13 ∈ NFPi, j(S), where t13 ≠ t12”.

Proof) By the definition of UTP and NFP, the test

point set, “t11 ∈ UTPi(S)”, “t12 ∈ NFPi, j(S), where
var1 = var2” and “t13 ∈ NFPi, j(S), where t13 ≠ t12”
satisfy the input values of var1 of the first row (‘var1
> var2’), which are ‘var1 = var2 + α’, ‘var1 = var2’
and ‘var1 = var2 – α’, respectively in Table 3. And
also the test point sets satisfy the input conditions of
the fifth row (‘var1 < var2’), which are ‘var1 = var2 –
α’, ‘var1 = var2’ and ‘var1 = var2 + α’.

Meanwhile, var1 < var2 and var1 > var2 return
outputs (‘false’, ‘false’, ‘true’) and (‘true’, ‘false’,
‘false’) to input values of ‘var1 = var2 – α’, ‘var1 =
var2’ and ‘var1 = var2 + α’. And the outputs are
different from any other output combinations in Table
3. It means that the input values of var1 can identify
‘>’ and ‘<’ from other relational operators.

Consequently, test points sets “t11 ∈ UTPi(S)”, “t12

∈ NFPi, j(S), where var1 = var2” and “t13 ∈ NFPi, j(S),
where t13 ≠ t12” can detect the RORF introduced by
replacing either ‘>’ or ‘<’ with a different one out of
{‘>’, ‘<’, ‘=’ , ‘≥’ , ‘≠’ , ‘≤’}.

Summary 2. If either ‘≥’ or ‘≤’ is replaced with a

different one out of {‘>’, ‘<’, ‘=’ , ‘≥’ , ‘≠’ , ‘≤’}, then
the test points to detect the RORF are set of {t21, t22,
t23} such that “t21 ∈ UTPi(S)”, “t22 ∈ UTPi(S), where
var1 = var2 and t22 ≠ t21”, “t23 ∈ NFPi, j(S)”.

Proof) Same as Summary 1 except test point sets.

Summary 3. If either ‘=’ is replaced with a different

one out of {‘>’, ‘<’, ‘≥’ , ‘≠’ , ‘≤’}, then the test points
to detect the RORF are set of {t31, t32, t33} such that “t31

∈ UTPi(S), where var1 = var2 “t32 ∈ NFPi,j, (S),
where var1 > var2”, “t33 ∈ NFPi, j(S), where var1 <
var2”.

Proof) Same as Summary 1 except test point sets.

Summary 4. If either ‘≠’ is replaced with a different

one out of {‘>’, ‘<’, ‘≥’ , ‘≠’ , ‘≤’}, then the test points
to detect this RORF are set of {t41, t42, t43} such that
“t41 ∈ UTPi(S), where var1 > var2”, “t42 ∈ UTPi,(S),
where var1 < var2”, “t43 ∈ NFPi, j(S), where var1 =
var2”.

Proof) Same as Summary 1 except test point sets.

The number of test points for MUNC to detect a

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 234

RORF in expression with n Boolean variables and m
terms with at most r relational expressions in each
term is bounded by 3mr. This is because each
relational expression needs either (two UTPi(S) and
one NFPij(S)) or (one UTPi(S) and two NFPi,j(S)). And
to find either UTPi(S) or NFPij(S), we need mr test
points in maximum.

When the proposed MUNC strategy is used along
with MUTP, the test point generation strategy
proposed by Chen to detect RORF, the extra test
points required to detect RORF is 2mr in maximum
since MUTP has to generate mr test points for UTPi(S).
MUNC needs extra mr test points when it is used
along with CUTPNFP strategy that generates 2mr test
points for UTPi(S) and NFPi,j(S). In the case that
MUNC is used with MNFP, it needs to generate 2mr
test points since MNFP requires mr test points for
NFPi,j(S).

MUTP, CUTPNFP and MNFP have to be applied
together to detect the typical eight types of faults in
Boolean expression. For them, 2mr test points are
required. Thus the maximum number of required test
points needed for detecting RORF by the proposed
MUNC is bound by mr when they are used to detect
the typical eight types of faults and RORF.

4.2 Applying the proposed algorithm to a

simple blower speed control module
Here is a simple example system to show how efficiently
the proposed algorithm works. A simple work model of
‘Blower Speed Control Module’ in a ‘HVAC system’ for
commercial vehicle is depicted in Fig 1. The state diagram
illustrates the state transition from a state that blower speed
is fast to another state that blower speed is slow.

Fig. 1. Blower speed state transition in HVAC system

Ignited is a flag to indicate vehicle ignition state and

Ignited = ‘True’ presents that the vehicle engine is
running. A/C_on is also a flag to indicate operating
state of air-conditioner and A/C_on = ‘True’ presents
that the air conditioner is running. Temp_sensor has a
numerical number to indicate the temperature of
ambient air in degree (℃).

At the condition that a vehicle is ignited, air
conditioner is on and the vehicle temperature is below
12 degree, the blower speed goes from fast to slow.
The model can be coded as follows;

 If (Current Blower Speed = Fast){

If (Ignited & (Temp_Sensor < 12) & A/C_on){
 New Blower Speed = Slow
}}

The above specification from fast blower speed to

slow blower speed, S, can be written in Boolean form
expression: S = Ignited · (Temp_Sensor < 12) · A/C_on.
Let substitute variables ‘Ignited’, ‘Temp_Sensor < 12’
and ‘A/C_on’ with ‘a’, ‘b’ and ‘c’ for convenience.
Note that relational expression ‘Temp_Sensor < 12’
has been substituted by a literal ‘b’. Then Smod
becomes Smod = a · b · c.

In the case that a RORF is introduced in S by
accidentally replacing ‘‘Temp_Sensor < 12” with
‘‘Temp_Sensor > 12”, (that is, S has been actually
implemented as Simp = Ignited · (Temp_Sensor < 12) ·
A/C_on and Smod = a · b′ · c), the RORF can be found by
a test point ‘t11 in UTP1(S)’, a test point ‘t12 in NFP1,

2(S), where Temp_Sensor = 12’, and a test point ‘t13 in
NFP1, 2(S), where t12 ≠ t13’ according to Summary 1.
Let choose t11 = (1, 11, 1), t12 = (1, 12, 1) and t13 = (1,
13, 1). Then S(t11), S(t12) and S(t13) should be ‘True’,
‘False’ and ‘False’. But they force the implemented
system to return ‘False’, ‘False’ and ‘True’. The test
outputs in implemented system are different from
what should be. Consequently, we can say that there is
a relational fault in the implemented system. The
position where the fault appears can be found by UTP
and NFP. Since the (incorrectly) implemented S has a
fault with UTP1(Simp) and NFP1,2(Simp), we know that
the fault occurs at the 2nd literal of the 1st term. The
literal corresponds to a relational operation is
‘Temp_Sensor < 12’.

5 Conclusion
We proposed a strategy to overcome the drawback of
method by T. Y. Chen and M. F. Lau. Their method
only detects the typical eight faults of software with
only Boolean operators and Boolean variables. Our
proposed method can detect relational operator
reference faults, which are easily observed in many
real applications. The proposed strategy identifies
Relational Operator Reference Faults through unique
combinations of outputs produced by relational

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 235

operators. The feasibility of the proposed strategy is
shown in a small application. The proposed method
can be used to detect RORF as well as the faults in the
typical eight fault classes frequently shown in
software when it is applied to software with other well
known test point generation strategies such as MUTP,
CUPNFP and MUTP.

Based on the previous works and our proposed
strategy, the further work has been progressed. The
future work includes finding methods to detect other
software faults such as more complicated relational
expression faults, associative shift faults and stuck-at
faults.

References:
[1] Kuo-Chung Tai, Mladen A. Vouk, Amit M.

Paradkar, Peng Lu, “Evaluation of a
Predicate-Based Software Testing Strategy”, IBM
Systems Journal, 33(3):445-457, 1994.

[2] Weyuker EJ, Goradia T, Singh A, “Automatically
generating test data from a Boolean specification”,
IEEE Transactions on Software Engineering,
20(5):353-363, 1994.

[3] D. Richard Kuhn, “Fault Classes and Error
Detection Capability of Specification Based
Testing”, ACM Transactions on Software
Engineering and Methodology (TOSEM), 8(4):411
- 424 , 1999.

[4] M. F. LAU, Y. T. Yu, “On the Relationships of
Faults for Boolean Specification Based Testing”,
Australian Software Engineering Conference,
2001, pp. 21-30

[5] T. Y. Chen and M. F. Lau, ''Test point selection
strategies based on Boolean specifications'', ,
Journal of Software Testing, Verification and
Reliability, 11(3):165-180, 2001.

[6] Tatsuhiro Tsuchiya and Tohru Kikuno, “On Fault
Classes and Error Detection Capability of
Specification-Based Testing”, ACM Transactions
on Software Engineering and Methodology
(TOSEM), 11(1):58-62, 2002.

[7] Vadim Okun, Paul E. Black, and Yaacov Yesha,
“Comparison of Fault Classes in
Specification-Based Testing”, Information and
Software Technology, Elsevier, 46(8):525-533,
2004.

[8] Man F. Lau and Yuen T. Yu, “An extended fault
class hierarchy for specification-based testing”,
ACM Transactions on Software Engineering and
Methodology (TOSEM)”, 14(3):247-276, 2005.

[9] T. Y. Chen, M. F. Lau and Y. T. Yu, ''MUMCUT:

a fault-based strategy for testing Boolean
specifications'', In Proceedings of Asia-Pacific
Software Engineering Conference 1999, pp.
606-613, December 1999, IEEE CS Press.

[10] V. Gurvich, L. L. Khachiyan, “On generating the
irredundant conjunctive and disjunctive normal
forms of monotone Boolean functions”, Discrete
Applied Mathematics, volume 96-97, Issue 1, pp.
363-373, October 1999.

[11] Quine WV. “The problem of simplifying truth
functions”, America Mathematical Monthly 1952;
59:521-531

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 236

