
Kernel Tracing Toolkit for Embedded Systems1

1. Introduction 
Embedded systems provide human-centric services in 

many fields of education, information, industry and 
service. Thus, many people have said that the 21st 
century is the age of embedded systems [1]. 

An embedded system is the device that is 
manufactured for the specific purposes intended by the 
original producer, embedded into the microprocessor or 
microcontroller. The basic kernel used in embedded 
systems is called the “embedded kernel”, and the 
Embedded Linux Kernel has been generally used in 
many embedded systems. For the analysis and 
performance evaluation of the embedded kernel, 
embedded systems have used kernel trace toolkits for 
testing and customizing.  

The kernel trace toolkit provides both kernel analysis 
functions and kernel performance evaluation functions 
for the monitoring system, which is responsible for 
debugging, testing, performance evaluation of 
application programs, system control, system 
management, etc. As such the kernel trace toolkit is 
needed to manage and test embedded systems because it 
dynamically collects, analyzes, and shows information 

on the performance or the process information of 
embedded systems [2]. 

However, the existing kernel trace toolkits [3-6] have 
problems such as compatibility among kernel versions, 
difficulty of patching kernel, complicated data analysis 
method, etc. Therefore, in this paper, we propose an 
embedded monitoring tool that extracts what is directly 
patched in a simple way, extracts the required specific 
kernel information and transmits the extracted data to 
the host environment based on GUI using the efficient.  

The remainder of this paper is organized as follows. 
In the next section, we introduce related work on 
existing kernel trace toolkits. Then in section 3 we 
describe the design of our kernel monitoring system and 
in section 4 we present the implementation of our 
monitoring system. Finally, we offer our conclusions 
and discuss future work. 
 
 
2. Related Work 

The main system tracing toolkit for Linux is the Linux 
Trace Toolkit (LTT) [4], which is used for analyzing 
subsets of executed processes and recording important 
system events. In contrast with other tracing tools such 
as strace, LTT does not use the ptrace() mechanism to 
intercept applications’ behavior. Instead, LTT provides a 
kernel patch to LTT that instruments key kernel 
subsystems within the kernel. The data generated by this 
instrumentation is then collected by the trace subsystem 
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and forwarded to a trace daemon to be written to disk. 
The entire process has very little impact on the system’s 
behavior and performance [3, 4]. 

Currently, research on providing LTTng (LTT Next 
Generation) has recently advanced in the use of kernel 
trace toolkits [5]. LTTng has taken over from the 
previous version, known as LTT. It has the same goals 
of low system disturbance and architecture 
independence while being fully reentrant, scalable, 
precise, extensible and modular, but LTTng samples 
even more performance evaluation information of the 
kernel than LTT. It also provides a visualization tool, 
called LTTV (LTT Toolkit Viewer), which is modular 
architecture based on plug-ins and supports SMP 
(Symmetric Multi-Processing) machines. LTTng 
supports event types with meta-information and huge 
traces (10-15GB), unlike LTT [5, 6].  

However, these kernel trace toolkits have a 
compatibility problem in that the patches are different 
from the kernel version respectively and it is difficult for 
a kernel beginner to install LTTng wholly. Also, there 
remains the problem that it is difficult to sample some 
specific information since it provides a great deal of 
information. To solve these problems, we present a 
kernel trace toolkit that enables sampling the core kernel 
analysis information simply and easily.  

 
 

3. Des ign  o f  Embedded  Kerne l  Tr ace  
Too lk i t  

In this paper, we provide a kernel trace toolkit 
through a unique approach, called the “ETT+ 
(Embedded kernel Trace Toolkit)”. In past research [7], 
the previous ETT used NFS architecture to gather 
sampled trace data from embedded systems to a remote 
host and provided a single visualization tool based on 
Windows MFC. The new ETT+, however, has the 
architecture to directly transmit the sampled trace data 
to the host system on the assumption that there is no file 
system on embedded systems, and provides an 
integrated development visualization tool based on 
GTK+, which includes functions of the remote shell , a 
process analysis tree and kernel memory layout, etc. 
Because GTK+ is supplied by both Windows and Linux, 
the ETT+ visualization tool can be executed on both 
systems. 

 

 
 

Fig.1: Overall Architecture of ETT+ 
 

Fig.1 shows the overall architecture of ETT+. The 
ETT+ system is divided into two parts: the target system 
and the host system. The ETT+ target system is 
responsible for the sampling and transmission of trace 
data and the ETT+ host system provides the 
visualization tool based on a GUI environment. ETT+ 
Collector in the ETT+ target system can get the kernel 
analysis data and the kernel trace data from an 
embedded kernel (ETT+ kernel) and transmits these to 
ETT+ Daemon. ETT+ Daemon enables a request for 
data transmission from ETT+ Kernel to ETT+ Daemon 
and then is responsible for transmitting the trace data to 
Host Daemon in the ETT+ host system. If Host Daemon 
collects the kernel trace data from ETT+ target system, 
it saves these kernel trace data on the host file system, 
and the ETT+ host visualization tool visualizes the 
kernel information graphically from the data.  

The kernel trace data created by ETT+ Collector 
should be transmitted to the host system. The trace data 
include both the process information and the system call 
information. Fig.2 shows the overall data flow diagram 
in the target and the host. As shown in Fig.2, if ETT+ 
Daemon requests a start of trace, the ETT+ kernel 
triggers ETT+ Collector to begin. When the kernel trace 
buffer is full, the ETT+ kernel will send the signal to 
ETT+ Daemon. Then ETT+ Daemon receives the signal 
from the ETT+ kernel and requests to copy the trace 
data from the kernel internal memory to the user space 
memory. 
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Fig.2: Trace Data Flow Diagram 

 
If the ETT+ kernel receives a request from ETT+ 

Daemon, it will copy the trace data to the user space 
memory, and then ETT+ Daemon immediately transmits 
the copied trace data to Host Daemon using TCP/IP 
communication. When Host Daemon receives the trace 
data, it creates a data file using the file system on the 
host machine and saves the sequence trace data by 
appending this data file. These operations occur 
repeatedly until ETT+ Daemon requires a stop of trace. 
If the ETT+ system stops tracing by ETT+ Daemon, the 
ETT+ visualization tool will finally display these trace 
data from the data file saved on the host system.  

In the next section, we present implementation issues 
based on the design of ETT+. 

 
 

4. Implementation 
In this section we introduce some methods regarding 

the trace data transmission between the host and the 
target and present some implementation issues. The 
trace data transmission methods are as follows: 

 Using NFS: The previous ETT [7] enables saving a 
huge trace data file and requires a file system. The 
target system should be always connected to the host 
system by using NFS for its fault, but this type is of 
comparatively easier architecture than others.  

 Using ETT+ Daemon: The new ETT+ presented in 
this paper requires a new kernel primitive (system 
call) to copy the trace data from ETT+ kernel space 
memory to user process space memory. It requires 
two memory copy operations to get the data from 
kernel to ETT+ Daemon and to send it to Host 
Daemon through TCP/IP connection. It also enables 
the control of trace data gathering period in a user 
level. It requires a slightly complex system, but does 

not need to have a file system that makes the whole 
system heavy.  

 Directly transmitting the trace data from the ETT+ 
kernel: This method requires the additional data 
transmission code (TCP/IP communication) to be 
inserted in kernel source. There is no memory copy 
between user space and kernel space, but needs the 
primitive to control the trace data gathering period in 
a user level. 
 
In this paper, we use the second method for an ETT+ 

system. It is necessary to add new primitives to request 
the trace data copy from ETT+ Daemon to the ETT+ 
kernel. In this paper, we made some kernel primitives, 
such as follow in Fig.3, to implement the ETT+ target 
system. 

 
Primitive Description 

sys_start_trace() Start of trace 

sys_stop_trace() Stop of trace 

sys_data_copy(unsigned 
char *addr, unsigned long 

size, unsigned int pid) 

Request for data 
copy 

 
Fig.3: ETT+ Primitive Description 

 
When ETT+ Daemon calls the system call 

“sys_start_trace()”, ETT+ Collector operates and the 
kernel trace will begin. Then ETT+ Daemon sends the 
arguments to ETT+ Collector in kernel space through 
the system call “sys_data_copy()”, and the ETT+ kernel 
copies the trace data to user space memory using these 
arguments. Arguments include three values such as 
target user memory address, data size to be copied and 
process ID of ETT+ Daemon. Finally, ETT+ Collector 
stops operating and tracing by using the system call 
“sys_stop_trace()”.  

ETT+ Collector is able to sample the trace data based 
on three trace types and each trace type constructs the 
trace data formats, such as follow in Fig.4. 

 
Fig.4: Trace Data Format 
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The descriptions of the three trace types in Fig.4 are 
as follows: 

 Trace Type ‘1’: As the trace type for the starting of 
system calls, this type presents the information which 
is sampled about processing of the system call handler. 
It includes information such as process ID, system call 
number, system call starting time (sec) and system call 
starting time (u_sec). 
 Trace Type ‘2’: As the trace type which presents the 
ending of specific system calls, this type presents 
information when the system call handler finishes. It 
includes information such as system call endeing time 
(sec) and system call ending time (u_sec). 
 Trace Type ‘3’: This type saves the created process 
information. It includes information such as process 
ID, parent process ID, process name, process execute 
time (sec) and process execute time (u_sec).  
 
Because the ETT+ host visualization tool has not yet 

been implemented completely, we introduce sampled 
raw data from the ETT+ target system.  

Fig.5 below presents a sample of real trace data 
sampled from the ETT+ Collector based on these trace 
data formats. In the first line, as above trace data format, 
‘3’ stands for the trace type, ‘1’ stands for a process ID, 
‘0’ means a parent process ID, ‘init’ means a process 
name, ‘2834470302’ represents a process execute time 
(sec), and ‘620147’ represents a process execute time 
(u_sec). 

 
3  1  0  init  2834470302  620147  
3  2  1  keventd  2834470302  620147 
................  
3  6  1  kupdated  2834470302 
620147  
3  43 1  syslogd  2834470302  620147  
................  
3  85 1   bash  2834470302  620147  
3  90 85  ETT_start  2834470302 
620147  
1  90 174  2834470302  620147  
2  2834470302  620252  
................  
3  92 1 dataCopy  2834470302  705905  
1  92 122  2834470302  706125  
2  2834470302  706138  
................  

Fig.5: Sample for Trace Data 
 
Finally, these trace data are transmitted to Host 

Daemon and saved in the data file, and the ETT+ 
visualization tool uses this file to analyze trace outputs.   

 
 
5. Conclusions 

In this paper, we present the approach to develop a 
kernel trace data sampling and trace data transmission 
using our kernel trace toolkit, “ETT+ (Embedded kernel 
Trace Toolkit)”. ETT+ provides a simple patch 
architecture, easy user environment and a daemon 
environment different from the existing LTT or LTTng, 
which provides a modular environment and complicated 
installation architecture. Also, we designed the 
architecture that ETT+ Daemon would require to copy 
the trace data when the kernel trace buffer was full.  

We are now considering the architecture for 
periodical trace data-gathering so as to make the ETT+ 
system operate in real time,. The host visualization tool 
has also not yet been implemented completely, and for 
the purpose of the embedded systems monitoring IDE, 
there are some tasks for us to implement concerning the 
remote shell functions and the performance evaluation 
information (such as interrupts, memory layout, detailed 
process information, etc) as our future work in this area.  
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