
Kernel Tracing Toolkit for Embedded Systems1

1. Introduction
Embedded systems provide human-centric services in

many fields of education, information, industry and
service. Thus, many people have said that the 21st
century is the age of embedded systems [1].

An embedded system is the device that is
manufactured for the specific purposes intended by the
original producer, embedded into the microprocessor or
microcontroller. The basic kernel used in embedded
systems is called the “embedded kernel”, and the
Embedded Linux Kernel has been generally used in
many embedded systems. For the analysis and
performance evaluation of the embedded kernel,
embedded systems have used kernel trace toolkits for
testing and customizing.

The kernel trace toolkit provides both kernel analysis
functions and kernel performance evaluation functions
for the monitoring system, which is responsible for
debugging, testing, performance evaluation of
application programs, system control, system
management, etc. As such the kernel trace toolkit is
needed to manage and test embedded systems because it
dynamically collects, analyzes, and shows information

on the performance or the process information of
embedded systems [2].

However, the existing kernel trace toolkits [3-6] have
problems such as compatibility among kernel versions,
difficulty of patching kernel, complicated data analysis
method, etc. Therefore, in this paper, we propose an
embedded monitoring tool that extracts what is directly
patched in a simple way, extracts the required specific
kernel information and transmits the extracted data to
the host environment based on GUI using the efficient.

The remainder of this paper is organized as follows.
In the next section, we introduce related work on
existing kernel trace toolkits. Then in section 3 we
describe the design of our kernel monitoring system and
in section 4 we present the implementation of our
monitoring system. Finally, we offer our conclusions
and discuss future work.

2. Related Work

The main system tracing toolkit for Linux is the Linux
Trace Toolkit (LTT) [4], which is used for analyzing
subsets of executed processes and recording important
system events. In contrast with other tracing tools such
as strace, LTT does not use the ptrace() mechanism to
intercept applications’ behavior. Instead, LTT provides a
kernel patch to LTT that instruments key kernel
subsystems within the kernel. The data generated by this
instrumentation is then collected by the trace subsystem

NAM-SIK YOON, JI-HYE BAE, YOON-YOUNG PARK, JIN BAEK KWON

Department of Computer Science
 Sunmoon University,

TangJeong-Myeon, Asan-si, Chung-Nam, 336-708
SOUTH KOREA.

Abstract - Embedded systems provide human-centric services in many fields of education, information, industry
and service, and various monitoring programs have been developed for managing, controlling and testing for these
embedded systems. Currently, many kernel trace toolkits are being used for monitoring. These trace toolkits are
complex systems, so we present a simple and explicit embedded kernel trace toolkit for embedded systems and
describe the transmission method for trace data between the embedded target system and the host system.

Key-Words: Embedded systems, Kernel trace toolkit, Trace data, ETT+

1 This research was supported by the MIC(Ministry of Information
and Communication), Korea, under the ITRC(Information
Technology Research Center) support program supervised by the
IITA(Institute of Information Technology Advancement) (IITA-
2006-C1090-0603-0020)

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 151

and forwarded to a trace daemon to be written to disk.
The entire process has very little impact on the system’s
behavior and performance [3, 4].

Currently, research on providing LTTng (LTT Next
Generation) has recently advanced in the use of kernel
trace toolkits [5]. LTTng has taken over from the
previous version, known as LTT. It has the same goals
of low system disturbance and architecture
independence while being fully reentrant, scalable,
precise, extensible and modular, but LTTng samples
even more performance evaluation information of the
kernel than LTT. It also provides a visualization tool,
called LTTV (LTT Toolkit Viewer), which is modular
architecture based on plug-ins and supports SMP
(Symmetric Multi-Processing) machines. LTTng
supports event types with meta-information and huge
traces (10-15GB), unlike LTT [5, 6].

However, these kernel trace toolkits have a
compatibility problem in that the patches are different
from the kernel version respectively and it is difficult for
a kernel beginner to install LTTng wholly. Also, there
remains the problem that it is difficult to sample some
specific information since it provides a great deal of
information. To solve these problems, we present a
kernel trace toolkit that enables sampling the core kernel
analysis information simply and easily.

3. Des ign o f Embedded Kerne l Tr ace
Too lk i t

In this paper, we provide a kernel trace toolkit
through a unique approach, called the “ETT+
(Embedded kernel Trace Toolkit)”. In past research [7],
the previous ETT used NFS architecture to gather
sampled trace data from embedded systems to a remote
host and provided a single visualization tool based on
Windows MFC. The new ETT+, however, has the
architecture to directly transmit the sampled trace data
to the host system on the assumption that there is no file
system on embedded systems, and provides an
integrated development visualization tool based on
GTK+, which includes functions of the remote shell , a
process analysis tree and kernel memory layout, etc.
Because GTK+ is supplied by both Windows and Linux,
the ETT+ visualization tool can be executed on both
systems.

Fig.1: Overall Architecture of ETT+

Fig.1 shows the overall architecture of ETT+. The
ETT+ system is divided into two parts: the target system
and the host system. The ETT+ target system is
responsible for the sampling and transmission of trace
data and the ETT+ host system provides the
visualization tool based on a GUI environment. ETT+
Collector in the ETT+ target system can get the kernel
analysis data and the kernel trace data from an
embedded kernel (ETT+ kernel) and transmits these to
ETT+ Daemon. ETT+ Daemon enables a request for
data transmission from ETT+ Kernel to ETT+ Daemon
and then is responsible for transmitting the trace data to
Host Daemon in the ETT+ host system. If Host Daemon
collects the kernel trace data from ETT+ target system,
it saves these kernel trace data on the host file system,
and the ETT+ host visualization tool visualizes the
kernel information graphically from the data.

The kernel trace data created by ETT+ Collector
should be transmitted to the host system. The trace data
include both the process information and the system call
information. Fig.2 shows the overall data flow diagram
in the target and the host. As shown in Fig.2, if ETT+
Daemon requests a start of trace, the ETT+ kernel
triggers ETT+ Collector to begin. When the kernel trace
buffer is full, the ETT+ kernel will send the signal to
ETT+ Daemon. Then ETT+ Daemon receives the signal
from the ETT+ kernel and requests to copy the trace
data from the kernel internal memory to the user space
memory.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 152

Fig.2: Trace Data Flow Diagram

If the ETT+ kernel receives a request from ETT+

Daemon, it will copy the trace data to the user space
memory, and then ETT+ Daemon immediately transmits
the copied trace data to Host Daemon using TCP/IP
communication. When Host Daemon receives the trace
data, it creates a data file using the file system on the
host machine and saves the sequence trace data by
appending this data file. These operations occur
repeatedly until ETT+ Daemon requires a stop of trace.
If the ETT+ system stops tracing by ETT+ Daemon, the
ETT+ visualization tool will finally display these trace
data from the data file saved on the host system.

In the next section, we present implementation issues
based on the design of ETT+.

4. Implementation
In this section we introduce some methods regarding

the trace data transmission between the host and the
target and present some implementation issues. The
trace data transmission methods are as follows:

 Using NFS: The previous ETT [7] enables saving a
huge trace data file and requires a file system. The
target system should be always connected to the host
system by using NFS for its fault, but this type is of
comparatively easier architecture than others.

 Using ETT+ Daemon: The new ETT+ presented in
this paper requires a new kernel primitive (system
call) to copy the trace data from ETT+ kernel space
memory to user process space memory. It requires
two memory copy operations to get the data from
kernel to ETT+ Daemon and to send it to Host
Daemon through TCP/IP connection. It also enables
the control of trace data gathering period in a user
level. It requires a slightly complex system, but does

not need to have a file system that makes the whole
system heavy.

 Directly transmitting the trace data from the ETT+
kernel: This method requires the additional data
transmission code (TCP/IP communication) to be
inserted in kernel source. There is no memory copy
between user space and kernel space, but needs the
primitive to control the trace data gathering period in
a user level.

In this paper, we use the second method for an ETT+

system. It is necessary to add new primitives to request
the trace data copy from ETT+ Daemon to the ETT+
kernel. In this paper, we made some kernel primitives,
such as follow in Fig.3, to implement the ETT+ target
system.

Primitive Description

sys_start_trace() Start of trace

sys_stop_trace() Stop of trace

sys_data_copy(unsigned
char *addr, unsigned long

size, unsigned int pid)

Request for data
copy

Fig.3: ETT+ Primitive Description

When ETT+ Daemon calls the system call

“sys_start_trace()”, ETT+ Collector operates and the
kernel trace will begin. Then ETT+ Daemon sends the
arguments to ETT+ Collector in kernel space through
the system call “sys_data_copy()”, and the ETT+ kernel
copies the trace data to user space memory using these
arguments. Arguments include three values such as
target user memory address, data size to be copied and
process ID of ETT+ Daemon. Finally, ETT+ Collector
stops operating and tracing by using the system call
“sys_stop_trace()”.

ETT+ Collector is able to sample the trace data based
on three trace types and each trace type constructs the
trace data formats, such as follow in Fig.4.

Fig.4: Trace Data Format

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 153

The descriptions of the three trace types in Fig.4 are
as follows:

 Trace Type ‘1’: As the trace type for the starting of
system calls, this type presents the information which
is sampled about processing of the system call handler.
It includes information such as process ID, system call
number, system call starting time (sec) and system call
starting time (u_sec).
 Trace Type ‘2’: As the trace type which presents the
ending of specific system calls, this type presents
information when the system call handler finishes. It
includes information such as system call endeing time
(sec) and system call ending time (u_sec).
 Trace Type ‘3’: This type saves the created process
information. It includes information such as process
ID, parent process ID, process name, process execute
time (sec) and process execute time (u_sec).

Because the ETT+ host visualization tool has not yet

been implemented completely, we introduce sampled
raw data from the ETT+ target system.

Fig.5 below presents a sample of real trace data
sampled from the ETT+ Collector based on these trace
data formats. In the first line, as above trace data format,
‘3’ stands for the trace type, ‘1’ stands for a process ID,
‘0’ means a parent process ID, ‘init’ means a process
name, ‘2834470302’ represents a process execute time
(sec), and ‘620147’ represents a process execute time
(u_sec).

3 1 0 init 2834470302 620147
3 2 1 keventd 2834470302 620147
................
3 6 1 kupdated 2834470302
620147
3 43 1 syslogd 2834470302 620147
................
3 85 1 bash 2834470302 620147
3 90 85 ETT_start 2834470302
620147
1 90 174 2834470302 620147
2 2834470302 620252
................
3 92 1 dataCopy 2834470302 705905
1 92 122 2834470302 706125
2 2834470302 706138
................

Fig.5: Sample for Trace Data

Finally, these trace data are transmitted to Host

Daemon and saved in the data file, and the ETT+
visualization tool uses this file to analyze trace outputs.

5. Conclusions

In this paper, we present the approach to develop a
kernel trace data sampling and trace data transmission
using our kernel trace toolkit, “ETT+ (Embedded kernel
Trace Toolkit)”. ETT+ provides a simple patch
architecture, easy user environment and a daemon
environment different from the existing LTT or LTTng,
which provides a modular environment and complicated
installation architecture. Also, we designed the
architecture that ETT+ Daemon would require to copy
the trace data when the kernel trace buffer was full.

We are now considering the architecture for
periodical trace data-gathering so as to make the ETT+
system operate in real time,. The host visualization tool
has also not yet been implemented completely, and for
the purpose of the embedded systems monitoring IDE,
there are some tasks for us to implement concerning the
remote shell functions and the performance evaluation
information (such as interrupts, memory layout, detailed
process information, etc) as our future work in this area.

References :

[1] J.H. Na, S.J. Kang, Y.I. Yoon, Y.Y. Park, S.B. Eun,
H.N. Kim, “Embedded System Programming”, SciTech
Media, 2004.
[2] Ji-Hye Bae, Yoon-Young Park, Jeong-Bae Lee,
Sung-Hee Choi, Chae-Deok Lim, “A Study on the
Design of the Monitoring Architecture for Embedded
Kernels Based on LTT,” Proc. of 4th Asia Pacific
International Symposium on Information Technology,
Gold Coast, Australia, pp.68~71, Jan., 2005.
[3] Karim Yaghmour, “Building Embedded Linux
Systems”, O’Reilly.
[4] Opersys Homepage, http://www.opersys.com/LTT
[5] LTTng & LTTV Homepage, http://ltt.polymtl.ca
[6] Mathieu Desnoyers, Michel R.Dagenais, “The
LTTng tracer: A low impact performance and behavior
monitor for GNU/Linux,” Linux Symposium, Ottawa,
Canada, Jul., 2006.
[7] Ji-Hye Bae, Hee-Kuk Kang, John Y. Kim, Yoon-
Young Park, “Monitoring Systems for Embedded
Equipment in Ubiquitous Environments,” International
Journal of Information Processing Systems (IJIPS),
KIPS, Vol.2, No.1, pp.58~65, Mar., 2006.
[8] Daniel P.Bovet, Marco Cesati, “Understanding the
Linux Kernel”, 2nd Edition, O’Reilly.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 154

http://www.opersys.com/LTT
http://ltt.polymtl.ca/

	References :

