
Linear and Temporal Logic Programming Language

ARNOŠT VEČERKA
Department of Computer Science

Palacky University
Tomkova 40, 77900 Olomouc

CZECH REPUBLIC
 http://www.inf.upol.cz/vecerka/

Abstract: - Recent logic calculi open new possibilities for logic programming. Apparently the most important of them
is a linear logic which makes possible to solve problems by resources treatment. The linear logic has already been used
for several proposals of logic programming language. But authors of these languages mostly focused on the proposal of
language and somewhat turned aside its efficient implementation. Programs written in these languages are mostly
interpreted by interprets written in Prolog. This is relatively simple method, but performance of such system is poor
and limits usability of these languages. The only useful language is LLP [3] which has its compiler system. Programs
written in LLP are compiled into an internal form and then interpreted by extended WAM. In this paper we describe
another programming language which has its compiler. This language is based on a linear logic and on a temporal logic
as well.

Key-Words: Linear logic, Fact, Rule, Temporal logic, Transition relation, Model

1 Introduction
A traditional logic programming language provides two
types of logic formulas:

• Facts
• Rules

The facts describe individuals or describe a relation that
holds between individuals. An example is a graph. The
graph is defined by nodes and edges. The nodes are
individuals and can be represented by unary facts in a
logic program. The edges mean relation of adjacency
between nodes and can be represented by binary facts in
the logic program.
The following graph

2

43
can be in classic logic programming language Prolog
represented by facts
 node(1). node(2). node(3). node(4).
 edge(1,2). edge(1,3). edge(1,4).
 edge(2,4). edge(3,4).
Prolog is a programming language based on a standard
predicate logic and every formula in Prolog program can
be used a number of time during program execution. It is
disadvantageous for problems in which facts represent
resources.

An example can be a graph problem in which we search
an important set of nodes (dominating set, independent
set, and other). Every node of the graph can be put to the
set only once. If we wrote a program for such problem in
Prolog we should use a list for storing nodes already
added to the set. Before adding next node to the set we
need to seek through the list in order to ensure that the
node is not in the set already. It makes the program more
complex and frequent searching through the list slows
down a program execution.
It is far better to use a programming language based on a
linear logic calculus for such problems. In the following
sections we shall show that the linear logic makes
possible to write programs that have more expressive
logical structure and less frequently use lists.

2 The programming language
The programming language described in this paper is
based on a linear logic calculus created by J. Y. Girard
[1]. In the language that is described in this paper the
two following linear logic connectives are implemented.
• The connective of multiplicative conjunction ⊗, in

the language it is written by the symbol *.
• The connective of additive disjunction ⊕, in the

language it is written by the symbol +.
The connectives can be used in rules and in a goal.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 226

2.1 Linear formulas
In a linear logic calculus formulas are linear by default.
The property of linearity results from axioms of the
calculus and means that every formula can be used only
once in an inference process. But for a logic program,
whose most formulas are usually used repeatedly during
execution, it is not convenient. Hence in the proposed
language the formula is not linear by default. The
formula that is linear is explicitly marked by the
keyword lin at its beginning. Linear formulas are facts
usually. In the described language the linear formula can
be also a rule.
The following simple program and goal demonstrate
usage of mentioned connectives and usage of a linear
formula.
 Program: a(1).
 lin a(2).
 Goal: (a(X) * a(Y)) + a(Z).
The connective of additive disjunction + means that
either the first subgoal a(X)*a(Y) or the second subgoal
a(Z) must be executed.
The connective of multiplicative conjunction * means
that both the two subgoals a(X) and a(Y) must be
executed.
The first fact a(1) is not linear and can be used a number
of time. The second fact a(2) is linear and can be used
only once. There are five possible executions of the goal:

1. X = 1, Y = 1
2. X = 1, Y = 2
3. X = 2, Y = 1
4. Z = 1
5. Z = 2

2.2 Brief description of the language
As the language is rather complex only the most
important its parts are described in this section.
A fact has form similar to its form in Prolog. It is a
predicate. Its syntax is:
 [lin] Predicate.
A rule has the following syntax:
 [lin] Predicate :- Formula.
The part Formula is defined by the following rules:
 Predicate is Formula
 Condition is Formula
 Unification is Formula
 If α and β are the Formulas the Formula also is:
 α * β
 α + β
 (α)
 once α
 not α

The syntax of the condition is:
 (Conditional_Expression)
The unification can have the following two forms of
syntax:
 (Variable = Expression)
 (Variable1 = Variable2)
The conditions and unifications are enclosed in
parentheses in order that a compiler can easily recognise
them during program compilation.
The keyword once has similar purpose as the Prolog cut
predicate (!). The formula which is after this keyword is
executed only once. It prevents another execution of the
formula after a backtracking.
The not is a negation-as-failure. It has the same meaning
as the not in Prolog.
A goal has similar syntax as the Formula at right side of
rule, but the goal can not contain conditions and
unifications.
As an example of program written in the proposed
language we present program solving knight's tour
problem. The goal is to find a tour of chess knight on a
chess board starting from arbitrary square. The knight
must visit every square of board exactly once.
The squares of board are represented by linear facts. A
move of knight to the next square is in the program
written by a rule. At right side of the rule there is a
predicate with which is unified the fact that represents
visited square. The fact is linear so that the knight cannot
visit the same square twice.
Program 1
 n=8.
 n1=n*n-1.
 lin board(1;n,1;n).
 goal (I,J) :- board(I,J) * tour(n1,I,J).
 tour(0,_,_).
 tour(N,I,J) :- ((I1=I-2) * ((J1=J-1) + (J1=J+1)) +
 (I1=I-1) * ((J1=J-2) + (J1=J+2)) +
 (I1=I+1) * ((J1=J-2) + (J1=J+2)) +
 (I1=I+2) * ((J1=J-1) + (J1=J+1))) *
 board(I1,J1) *
 (N1=N-1) * tour(N1,I1,J1).
Each square of board is represented by one linear fact.
Hence a standard 8×8 board is represented by 64 facts.
In the proposed language there is a possibility to write
facts as an array to avoid writing so many facts. The
following array of linear facts
 lin board(1;8,1;8).
is equivalent to 64 linear facts
 lin board(1,1). lin board(2,1). ... lin board(8,8).

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 227

The language also has possibility to define constants so
that writing of program may be easier. A definition of
constant has the syntax:
 name = constant_expression.
The constant name has the same syntax as a name of
predicate. The definition of constant can also be in a
goal. This definition has precedence before the definition
of constant with the same name in program. For example
the goal
 n=6, goal(1,1).
means that the previous program is executed for a board
6×6 and the tour of knight starts on a square in corner of
board.

2.3 Temporal logic
In the previous section we showed that the linear logic
makes possible to replace usage of list by more effective
facts. Nevertheless, when number of facts is
considerable it also has an unfavourable influence on
execution time.
For example, the previous program contains 64 linear
facts which represent squares of board. When the knight
steps upon any square the corresponding linear fact is
removed from formulas of program. Hence the number
of available facts is from 64 to 1 in accordance with the
length of up to now stepped part of tour. A temporal
logic model can significantly decrease the number of
available facts in problems like this.
In a classical temporal logic the model is defined as the
structure
 M = (S, →, L)
where S is a set of states, → is a transition relation (a
binary relation on S, saying how to move from current
state to next state), L is a function which associates each
state with the set of atomic formulas which are true at
that state.
A linear logic is a logic of resources and this function
will determine available formulas in individual states in
place of true formulas.
A transition relation formula in the proposed language
has the syntax:
 Predicate -> Formula.
The part Formula of transition relation is defined by the
following rules:
 Predicate is Formula,
 If α and β are the Formulas the Formula also is:
 α * β
 α , β
 Condition * α
 Unification * α
 (α)

The comma (,) is a separator in a list of formulas. For
example the relation formula
 Predicate -> Formula1, Formula2, Formula3.
is equivalent to the following three relation formulas
 Predicate -> Formula1.
 Predicate -> Formula2.
 Predicate -> Formula3.
An example is a transition relation for a temporal logic
model of the graph mentioned in introductory section.
 lin node(1;4).
 node(1) -> node(2), node(3), node(4).
 node(2) -> node(1), node(4).
 node(3) -> node(1), node(4).
 node(4) -> node(1), node(2), node(3).
It is also possible to use facts for a definition of
transition relation. An example is an alternative method
for defining a transition relation for the previous graph.
 lin node(1;4).
 edge(1,2). edge(1,3). edge(1,4).
 edge(2,4). edge(3,4).
 node(I) -> (edge(I,J), edge(J,I)) * node(J).
The temporal logic contains three operators that have
meanings always, eventually, and next. In the proposed
language the operator next is implemented from these
operators. This operator can be used at a predicate in rule
or in goal. The operator designates that only the fact
which is from next state with regard to current state can
be unified with this predicate.
It is necessary to determine which of states will be an
initial one. In the proposed language there is the
keyword init for this purpose. This keyword can be used
at a predicate. A state with the fact which will be unified
with this predicate will be the initial state.
An example how to use the keyword init and operator
next is the following program. The program searches for
Hamiltonian cycle in a graph.
Program 2
 n = number_of_nodes.
 lin node(1;n).
 lin node(1).
 … facts for edges ….
 node(I) -> (edge(I,J), edge(J,I)) * node(J).
 n1 = n-1.
 cycle :- init node(1) * adjac(n1).
 adjac(0) :- next node(1).
 adjac(N) :- next node(X) * (N1=N-1) * adjac(N1).
Hamiltonian cycle is a closed path which contains all
graph nodes. The program searches it as a path from
node 1 to node 1. The fact node(1) is used two times.
That is why one more linear fact lin node(1) is added to
facts in the program.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 228

As a complete example of using temporal logic model
we again present program solving knight's tour problem.
Program 3
 n=8.
 lin board(1;n,1;n).
 board(I,J) -> ((I1=I-2) * ((J1=J-1), (J1=J+1)),
 (I1=I-1) * ((J1=J-2), (J1=J+2)),
 (I1=I+1) * ((J1=J-2), (J1=J+2)),
 (I1=I+2) * ((J1=J-1), (J1=J+1))) *
 board(I1,J1).
 n1=n*n-1.
 goal (I,J) :- init board(I,J) * tour(n1).
 tour(0).
 tour(N) :- next board(I,J) * (N1=N-1) * tour(N1).
The main part of the program is a transition relation →.
A compiler takes this relation and the array of facts
board(1;n,1;n) and creates a temporal logic model. This
model contains n2 states. In each of these states one
linear fact board(i,j) is available.

3 The compiler
The compiler is a stand-alone program. It has three parts.
The first part translates a goal formula and formulas of
logic program into an internal form. The internal form
has different structure than internal form used by WAM,
which is an abstract machine designed for execution of
Prolog programs. It has been also used for a construction
of compiler system for a linear logic programming
language LLP [3]. Authors of this language extended the
WAM in order that it might execute linear formulas.
Great advantage of this approach is a utilization of
memory architecture, unification, backtracking, and
other functionalities of WAM. It significantly simplifies
a construction of compiler, but the WAM is designed for
Prolog and its modification for a programming language
based on linear logic may be less effective. That is why a
unique internal form has been developed for the
proposed language. The internal form has a simple tree-
like structure. As this internal form retains a structure of
logic formulas it is also convenient for a program tracing
during execution.
The second part of compiler adds supplementary
pointers to the internal form. The purpose of these
pointers is to make a direct transition from a currently
executed node to a next node to be executed. The
pointers considerably reduce a traversal of internal form
tree during a program execution. This part of compiler
also creates list of formulas for every predicate which is
on right side of a rule or in a goal. This list contains all
facts and rules which can be unified with the predicate.
During program execution the list makes selection of

formula for unification with the predicate quick. It is
simply taken from the list.
In this stage of compilation a temporal logic model is
also created if the program contains transition relations.
The last part of compiler is an interpreter of the internal
form that executes the program. The interpreter has been
proposed with care because its quality affects execution
speed. The interpreter is a machine with three stacks.
The first stack is a main stack and contains runtime data
of executed nodes. The second stack is for variables. If
an instance of rule or fact is created its variables are
located at this stack. The third stack contains data about
performed unifications. These data make possible undo
unifications during backtracking.
The compiler is completely written in C++. Its current
version has a graphical user interface in operating system
Windows. The compiler is available with some example
programs at [2].

4 Performance evaluation
Performance of the compiler has been tested on knight's
tour problem. This problem has been solved by five
various programs.
• The first program is written in the described language

and it is the example program 1 presented in
subsection 2.2. The language described in this paper
has name LTLL (Linear and Temporal Logic
Language).

• The second program is also written in LTLL. This
program uses a temporal logic model. It is the example
program 3 presented in subsection 2.3.

• The third program is written in linear logic
programming language LLP. The language has been
proposed and its compiler system has been developed
at Kobe University in Japan [3].

• The fourth program is written in Prolog. SWI-Prolog
was used for its execution. It is very good
implementation of Prolog and is available at [7].

• The fifth program is written in LTLL. It is written by
the same manner as the Prolog program and uses
neither linear formulas nor temporal logic model. The
program uses a list with visited squares for checking if
a particular square has not been yet visited. It is the
following program.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 229

Program 4
 n = 8.
 n2 = n*n.
 n1 = n2-1.
 goal(I,J,L) :- tour(n1,I,J,[I,J|L]).
 tour(0,_,_,_).
 tour(N,I,J,L) :- ((I>2)*(I1=I-2) * ((J>1)*(J1=J-1) +
 (J<n2)*(J1=J+1)) +
 (I>1)*(I1=I-1) * ((J>2)*(J1=J-2) +
 (J<n1)*(J1=J+2)) +
 (I<n2)*(I1=I+1) * ((J>2)*(J1=J-2) +
 (J<n1)*(J1=J+2)) +
 (I<n1)*(I1=I+2) * ((J>1)*(J1=J-1) +
 (J<n2)*(J1=J+1))) *
 not memb(I1,J1,L) * (N1=N-1) *
 tour(N1,I1,J1,[I1,J1|L]).
 memb(X,Y,[X,Y|_]).
 memb(X,Y,[_,_|Z]) :- memb(X,Y,Z).
A comparison of this program with the program written
in Prolog is interesting because the LTLL compiler is
based on a machine which is very different from the
abstract machine WAM used for Prolog compiler.
It is also evident that this program is more complex than
the program based on linear logic or the program based
on linear and temporal logic.

Language Time
(seconds)

Linear
logic

Temporal
logic

LTLL 31 yes -
LTLL 7 yes yes
LLP 109 yes -

Prolog 1155 - -
LTLL 468 - -

All executions have been made on a computer with
processor P4, 2.8 GHz.
The programs written in LTLL and the program written
in Prolog are available at [2]. The program written in
LLP is available at [3].

5 Conclusion
The language presented in this paper is interesting in
several aspects. The first one is a linear logic calculus on
which the language is based. As the test of performance
has showed linear formulas are very useful for resource-
oriented problems. Execution time of the example
program with linear formulas is markedly less than time
of the equivalent program without linear formulas.
Also the idea to use a temporal logic for the language
proposal has proved effective. The temporal logic model
in the example program has significantly speeded up
execution. In addition, the language LTLL, described in

the paper, is evidently the first logical programming
language that makes possible to use a temporal logic
model.
Another important comparison is between compilers.
SWI-Prolog compiler is based on the abstract machine
WAM. LLP compiler system is also based on WAM.
LTLL compiler is based on a unique machine which has
been proposed for this language. The comparison
between Prolog program and equivalent LTLL program
(the program 4 without linear formulas and temporal
logic model) has showed that LTLL program is more
than two times faster. The comparison between LLP
program and equivalent LTLL program (the program 1
with linear formulas) has showed that LTLL program is
approximately three times faster. Apparently the LTLL
compiler is effectively proposed.

References:
[1] Girard, Jean-Yves. Linear Logic: Its Syntax and

Semantics. Available at http://iml.univ-
mrs.fr/~girard/Articles.html.

[2] Linear and Temporal Logic Programming Language.
Available at http://www.inf.upol.cz/vecerka/.

[3] LLP: A Linear Logic Programming Language and its
Compiler System. Available at http://bach.istc.kobe-
u.ac.jp/llp/.

[4] Lolli: A Linear Logic Programming Language.
Available at
http://www.lix.polytechnique.fr/~dale/lolli/.

[5] Lygon: Logic Programming with Linear Logic.
Available at http://www.cs.rmit.edu.au/lygon/.

[6] Mordechai Ben-Ari. Mathematical Logic for
Computer Science. London: Springer-Verlag, 2001.

[7] SWI-Prolog. Avaliable at http://www.swi-
prolog.org.

[8] The Forum Specification Language. Available at
http://www.lix.polytechnique.fr/~dale/forum/.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 230

