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Abstract: - Recent logic calculi open new possibilities for logic programming. Apparently the most important of them 
is a linear logic which makes possible to solve problems by resources treatment. The linear logic has already been used 
for several proposals of logic programming language. But authors of these languages mostly focused on the proposal of 
language and somewhat turned aside its efficient implementation. Programs written in these languages are mostly 
interpreted by interprets written in Prolog. This is relatively simple method, but performance of such system is poor 
and limits usability of these languages. The only useful language is LLP [3] which has its compiler system. Programs 
written in LLP are compiled into an internal form and then interpreted by extended WAM. In this paper we describe 
another programming language which has its compiler. This language is based on a linear logic and on a temporal logic 
as well. 
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1   Introduction 
A traditional logic programming language provides two 
types of logic formulas: 

• Facts 
• Rules 

The facts describe individuals or describe a relation that 
holds between individuals. An example is a graph. The 
graph is defined by nodes and edges. The nodes are 
individuals and can be represented by unary facts in a 
logic program. The edges mean relation of adjacency 
between nodes and can be represented by binary facts in 
the logic program. 
The following graph  

2

43  
can be in classic logic programming language Prolog 
represented by facts   
   node(1). node(2). node(3). node(4). 
   edge(1,2).  edge(1,3). edge(1,4). 
   edge(2,4).  edge(3,4). 
Prolog is a programming language based on a standard 
predicate logic and every formula in Prolog program can 
be used a number of time during program execution. It is 
disadvantageous for problems in which facts represent 
resources. 

An example can be a graph problem in which we search 
an important set of nodes (dominating set, independent 
set, and other). Every node of the graph can be put to the 
set only once. If we wrote a program for such problem in 
Prolog we should use a list for storing nodes already 
added to the set. Before adding next node to the set we 
need to seek through the list in order to ensure that the 
node is not in the set already. It makes the program more 
complex and frequent searching through the list slows 
down a program execution. 
It is far better to use a programming language based on a 
linear logic calculus for such problems. In the following 
sections we shall show that the linear logic makes 
possible to write programs that have more expressive 
logical structure and less frequently use lists. 
 
 
2   The programming language 
The programming language described in this paper is 
based on a linear logic calculus created by J. Y. Girard 
[1]. In the language that is described in this paper the 
two following linear logic connectives are implemented. 
• The connective of multiplicative conjunction ⊗, in 

the language it is written by the symbol *. 
• The connective of additive disjunction ⊕, in the 

language it is written by the symbol +. 
The connectives can be used in rules and in a goal. 
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2.1   Linear formulas 
In a linear logic calculus formulas are linear by default. 
The property of linearity results from axioms of the 
calculus and means that every formula can be used only 
once in an inference process. But for a logic program, 
whose most formulas are usually used repeatedly during 
execution, it is not convenient. Hence in the proposed 
language the formula is not linear by default. The 
formula that is linear is explicitly marked by the 
keyword lin at its beginning. Linear formulas are facts 
usually. In the described language the linear formula can 
be also a rule. 
The following simple program and goal demonstrate 
usage of mentioned connectives and usage of a linear 
formula. 
  Program:  a(1). 
                 lin a(2). 
  Goal:       (a(X) * a(Y)) + a(Z). 
The connective of additive disjunction + means that 
either the first subgoal a(X)*a(Y) or the second subgoal 
a(Z) must be executed. 
The connective of multiplicative conjunction * means 
that both the two subgoals a(X) and a(Y) must be 
executed. 
The first fact a(1) is not linear and can be used a number 
of time. The second fact a(2) is linear and can be used 
only once. There are five possible executions of the goal: 

1. X = 1, Y = 1 
2. X = 1, Y = 2 
3. X = 2, Y = 1 
4. Z = 1 
5. Z = 2 

 
2.2   Brief description of the language 
As the language is rather complex only the most 
important its parts are described in this section. 
A fact has form similar to its form in Prolog. It is a 
predicate. Its syntax is: 
  [ lin ] Predicate. 
A rule has the following syntax: 
  [ lin ] Predicate :- Formula. 
The part Formula is defined by the following rules: 
    Predicate is Formula 
    Condition is Formula 
    Unification is Formula 
    If α and β are the Formulas the Formula also is: 
        α * β 
        α + β 
        (α) 
        once α 
        not α  

The syntax of the condition is: 
   ( Conditional_Expression ) 
The unification can have the following two forms of 
syntax: 
    ( Variable = Expression ) 
    ( Variable1 = Variable2 ) 
The conditions and unifications are enclosed in 
parentheses in order that a compiler can easily recognise 
them during program compilation. 
The keyword once has similar purpose as the Prolog cut 
predicate (!). The formula which is after this keyword is 
executed only once. It prevents another execution of the 
formula after a backtracking. 
The not is a negation-as-failure. It has the same meaning 
as the not in Prolog. 
A goal has similar syntax as the Formula at right side of 
rule, but the goal can not contain conditions and 
unifications. 
As an example of program written in the proposed 
language we present program solving knight's tour 
problem. The goal is to find a tour of chess knight on a 
chess board starting from arbitrary square. The knight 
must visit every square of board exactly once. 
The squares of board are represented by linear facts. A 
move of knight to the next square is in the program 
written by a rule. At right side of the rule there is a 
predicate with which is unified the fact that represents 
visited square. The fact is linear so that the knight cannot 
visit the same square twice. 
Program 1 
  n=8. 
  n1=n*n-1. 
  lin board(1;n,1;n). 
  goal (I,J) :- board(I,J) * tour(n1,I,J). 
  tour(0,_,_). 
  tour(N,I,J) :- ((I1=I-2) * ((J1=J-1) + (J1=J+1)) + 
                          (I1=I-1) * ((J1=J-2) + (J1=J+2)) + 
                          (I1=I+1) * ((J1=J-2) + (J1=J+2)) + 
                          (I1=I+2) * ((J1=J-1) + (J1=J+1))) * 
                        board(I1,J1) * 
                        (N1=N-1) * tour(N1,I1,J1). 
Each square of board is represented by one linear fact. 
Hence a standard 8×8 board is represented by 64 facts. 
In the proposed language there is a possibility to write 
facts as an array to avoid writing so many facts. The 
following array of linear facts 
    lin board(1;8,1;8). 
is equivalent to 64 linear facts 
    lin board(1,1). lin board(2,1). ... lin board(8,8). 
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The language also has possibility to define constants so 
that writing of program may be easier. A definition of 
constant has the syntax: 
    name = constant_expression.  
The constant name has the same syntax as a name of 
predicate. The definition of constant can also be in a 
goal. This definition has precedence before the definition 
of constant with the same name in program. For example 
the goal 
    n=6, goal(1,1). 
means that the previous program is executed for a board 
6×6 and the tour of knight starts on a square in corner of 
board. 
 
2.3   Temporal logic  
In the previous section we showed that the linear logic 
makes possible to replace usage of list by more effective 
facts. Nevertheless, when number of facts is 
considerable it also has an unfavourable influence on 
execution time. 
For example, the previous program contains 64 linear 
facts which represent squares of board. When the knight 
steps upon any square the corresponding linear fact is 
removed from formulas of program. Hence the number 
of available facts is from 64 to 1 in accordance with the 
length of up to now stepped part of tour. A temporal 
logic model can significantly decrease the number of 
available facts in problems like this. 
In a classical temporal logic the model is defined as the 
structure 
    M = (S, →, L) 
where S is a set of states, → is a transition relation (a 
binary relation on S, saying how to move from current 
state to next state), L is a function which associates each 
state with the set of atomic formulas which are true at 
that state. 
A linear logic is a logic of resources and this function 
will determine available formulas in individual states in 
place of true formulas. 
A transition relation formula in the proposed language 
has the syntax: 
   Predicate -> Formula. 
The part Formula of transition relation is defined by the 
following rules: 
    Predicate is Formula, 
    If α and β are the Formulas the Formula also is: 
      α * β 
      α , β 
      Condition * α 
      Unification * α 
      (α) 

The comma (,) is a separator in a list of formulas. For 
example the relation formula 
   Predicate -> Formula1,  Formula2,  Formula3. 
is equivalent to the following three relation formulas 
   Predicate -> Formula1. 
   Predicate -> Formula2. 
   Predicate -> Formula3. 
An example is a transition relation for a temporal logic 
model of the graph mentioned in introductory section. 
   lin node(1;4). 
   node(1) -> node(2), node(3), node(4). 
   node(2) -> node(1), node(4). 
   node(3) -> node(1), node(4). 
   node(4) -> node(1), node(2), node(3). 
It is also possible to use facts for a definition of 
transition relation. An example is an alternative method 
for defining a transition relation for the previous graph. 
   lin node(1;4). 
   edge(1,2). edge(1,3). edge(1,4). 
   edge(2,4).  edge(3,4). 
   node(I) -> (edge(I,J), edge(J,I)) * node(J). 
The temporal logic contains three operators that have 
meanings always, eventually, and next. In the proposed 
language the operator next is implemented from these 
operators. This operator can be used at a predicate in rule 
or in goal. The operator designates that only the fact 
which is from next state with regard to current state can 
be unified with this predicate. 
It is necessary to determine which of states will be an 
initial one. In the proposed language there is the 
keyword init for this purpose. This keyword can be used 
at a predicate. A state with the fact which will be unified 
with this predicate will be the initial state. 
An example how to use the keyword init and operator 
next is the following program. The program searches for 
Hamiltonian cycle in a graph. 
Program 2 
   n = number_of_nodes. 
   lin node(1;n). 
   lin node(1). 
   … facts for edges …. 
   node(I) -> (edge(I,J), edge(J,I)) * node(J). 
   n1 = n-1. 
   cycle :- init node(1) * adjac(n1). 
   adjac(0) :- next node(1). 
   adjac(N) :- next node(X) * (N1=N-1) * adjac(N1). 
Hamiltonian cycle is a closed path which contains all 
graph nodes. The program searches it as a path from 
node 1 to node 1. The fact node(1) is used two times. 
That is why one more linear fact lin node(1) is added to 
facts in the program. 
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As a complete example of using temporal logic model 
we again present program solving knight's tour problem. 
Program 3 
   n=8. 
   lin board(1;n,1;n). 
   board(I,J) -> ((I1=I-2) * ((J1=J-1), (J1=J+1)), 
                           (I1=I-1) * ((J1=J-2), (J1=J+2)), 
                           (I1=I+1) * ((J1=J-2), (J1=J+2)), 
                           (I1=I+2) * ((J1=J-1), (J1=J+1))) * 
                          board(I1,J1). 
   n1=n*n-1. 
   goal (I,J) :- init board(I,J) * tour(n1). 
   tour(0). 
   tour(N) :- next board(I,J) * (N1=N-1) * tour(N1). 
The main part of the program is a transition relation →. 
A compiler takes this relation and the array of facts 
board(1;n,1;n) and creates a temporal logic model. This 
model contains n2 states. In each of these states one 
linear fact board(i,j) is available. 
 
 
3   The compiler 
The compiler is a stand-alone program. It has three parts. 
The first part translates a goal formula and formulas of 
logic program into an internal form. The internal form 
has different structure than internal form used by WAM, 
which is an abstract machine designed for execution of 
Prolog programs. It has been also used for a construction 
of compiler system for a linear logic programming 
language LLP [3]. Authors of this language extended the 
WAM in order that it might execute linear formulas. 
Great advantage of this approach is a utilization of 
memory architecture, unification, backtracking, and 
other functionalities of WAM. It significantly simplifies 
a construction of compiler, but the WAM is designed for 
Prolog and its modification for a programming language 
based on linear logic may be less effective. That is why a 
unique internal form has been developed for the 
proposed language. The internal form has a simple tree-
like structure. As this internal form retains a structure of 
logic formulas it is also convenient for a program tracing 
during execution. 
The second part of compiler adds supplementary 
pointers to the internal form. The purpose of these 
pointers is to make a direct transition from a currently 
executed node to a next node to be executed. The 
pointers considerably reduce a traversal of internal form 
tree during a program execution. This part of compiler 
also creates list of formulas for every predicate which is 
on right side of a rule or in a goal. This list contains all 
facts and rules which can be unified with the predicate. 
During program execution the list makes selection of 

formula for unification with the predicate quick. It is 
simply taken from the list. 
In this stage of compilation a temporal logic model is 
also created if the program contains transition relations. 
The last part of compiler is an interpreter of the internal 
form that executes the program. The interpreter has been 
proposed with care because its quality affects execution 
speed. The interpreter is a machine with three stacks. 
The first stack is a main stack and contains runtime data 
of executed nodes. The second stack is for variables. If 
an instance of rule or fact is created its variables are 
located at this stack. The third stack contains data about 
performed unifications. These data make possible undo 
unifications during backtracking. 
The compiler is completely written in C++. Its current 
version has a graphical user interface in operating system 
Windows. The compiler is available with some example 
programs at [2]. 
 
 
4   Performance evaluation 
Performance of the compiler has been tested on knight's 
tour problem. This problem has been solved by five 
various programs. 
• The first program is written in the described language 

and it is the example program 1 presented in 
subsection 2.2. The language described in this paper 
has name LTLL (Linear and Temporal Logic 
Language). 

• The second program is also written in LTLL. This 
program uses a temporal logic model. It is the example 
program 3 presented in subsection 2.3. 

• The third program is written in linear logic 
programming language LLP. The language has been 
proposed and its compiler system has been developed 
at Kobe University in Japan [3]. 

• The fourth program is written in Prolog. SWI-Prolog 
was used for its execution. It is very good 
implementation of Prolog and is available at [7]. 

• The fifth program is written in LTLL. It is written by 
the same manner as the Prolog program and uses 
neither linear formulas nor temporal logic model. The 
program uses a list with visited squares for checking if 
a particular square has not been yet visited. It is the 
following program. 
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Program 4 
  n = 8. 
  n2 = n*n. 
  n1 = n2-1. 
  goal(I,J,L) :- tour(n1,I,J,[I,J|L]). 
  tour(0,_,_,_). 
  tour(N,I,J,L) :- ((I>2)*(I1=I-2) * ((J>1)*(J1=J-1) + 
                              (J<n2)*(J1=J+1)) + 
                           (I>1)*(I1=I-1) * ((J>2)*(J1=J-2) + 
                              (J<n1)*(J1=J+2)) + 
                           (I<n2)*(I1=I+1) * ((J>2)*(J1=J-2) + 
                              (J<n1)*(J1=J+2)) + 
                           (I<n1)*(I1=I+2) * ((J>1)*(J1=J-1) + 
                             (J<n2)*(J1=J+1))) * 
                         not memb(I1,J1,L) * (N1=N-1) * 
                          tour(N1,I1,J1,[I1,J1|L]). 
  memb(X,Y,[X,Y|_]). 
  memb(X,Y,[_,_|Z]) :- memb(X,Y,Z). 
A comparison of this program with the program written 
in Prolog is interesting because the LTLL compiler is 
based on a machine which is very different from the 
abstract machine WAM used for Prolog compiler. 
It is also evident that this program is more complex than 
the program based on linear logic or the program based 
on linear and temporal logic. 

Language Time 
(seconds) 

Linear 
logic 

Temporal 
logic 

LTLL 31  yes - 
LTLL 7  yes yes 
LLP 109 yes - 

Prolog 1155 - - 
LTLL 468 - - 

All executions have been made on a computer with 
processor P4, 2.8 GHz. 
The programs written in LTLL and the program written 
in Prolog are available at [2]. The program written in 
LLP is available at [3]. 
 
 
5   Conclusion 
The language presented in this paper is interesting in 
several aspects. The first one is a linear logic calculus on 
which the language is based. As the test of performance 
has showed linear formulas are very useful for resource-
oriented problems. Execution time of the example 
program with linear formulas is markedly less than time 
of the equivalent program without linear formulas. 
Also the idea to use a temporal logic for the language 
proposal has proved effective. The temporal logic model 
in the example program has significantly speeded up 
execution. In addition, the language LTLL, described in 

the paper, is evidently the first logical programming 
language that makes possible to use a temporal logic 
model. 
Another important comparison is between compilers. 
SWI-Prolog compiler is based on the abstract machine 
WAM. LLP compiler system is also based on WAM. 
LTLL compiler is based on a unique machine which has 
been proposed for this language. The comparison 
between Prolog program and equivalent LTLL program 
(the program 4 without linear formulas and temporal 
logic model) has showed that LTLL program is more 
than two times faster. The comparison between LLP 
program and equivalent LTLL program (the program 1 
with linear formulas) has showed that LTLL program is 
approximately three times faster. Apparently the LTLL 
compiler is effectively proposed. 
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