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Abstract: - The paper presents the Mixed-Integer Non-linear Programming optimization approach (MINLP) to 
structural optimization. The MINLP is a combined continuous/discrete optimization technique, where a structural 
topology, discrete materials and standard sizes are optimized simultaneously with the continuous parameters (e.g. costs, 
mass). The MINLP optimization is performed through three steps: i.e. the generation of a mechanical superstructure, 
the modelling of an MINLP model formulation and the solution of the defined MINLP problem. The Modified Outer-
Approximation/Equality-Relaxation (OA/ER) algorithm and a two-phase MINLP strategy are applied. The 
optimization is performed by a user-friendly version of the MINLP computer package MIPSYN. Two examples are 
presented at the end of the paper. 
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1   Introduction 
The paper presents the Mixed-Integer Non-linear 
Programming approach (MINLP) to structural 
optimization. The MINLP is a combined 
continuous/discrete optimization technique. It handles 
with continuous and discrete binary 0-1 variables 
simultaneously. While continuous variables are defined 
for the continuous optimization of parameters 
(dimensions, stresses, strains, weights, costs, etc.), 
discrete variables are used to express discrete decisions, 
i.e. usually the existence or non-existence of structural 
elements inside the defined structure. Different materials 
and standard sizes may also be defined as discrete 
alternatives. Since the MINLP performs continuous and 
discrete optimizations simultaneously, the MINLP 
approach also finds optimal continuous parameters 
(mass, costs, stresses, etc.), a structural topology with an 
optimal number and a configuration of structural 
elements, discrete materials and standard sizes 
simultaneously. 
     The MINLP optimization approach is proposed to be 
performed through three steps. The first one includes the 
generation of a mechanical superstructure of different 
topology, material and standard dimension alternatives, 
the second one involves the development of an MINLP 
model formulation and the last one consists of a solution 
for the defined MINLP optimization problem. 
     The MINLP continuous/discrete optimization 
problems of structural optimization are in most cases 
comprehensive, non-convex and highly non-linear. This 
paper reports the experience in solving this type of 
problem by using the Outer-Approximation/Equality-

Relaxation (OA/ER) algorithm [1], [2]. A two-phase 
MINLP optimization is proposed to accelerate the 
convergence of the mentioned algorithm. The 
optimizations are carried out by an MINLP computer 
package MIPSYN, the successor of PROSYN [1] and 
TOP [2-4]. 
     Two examples are presented at the end of the paper. 
The first one shows the material and standard dimension 
optimization of a composite floor system and the second 
one presents the topology and standard sizes 
optimization of a single-storey industrial building. 
 
 
2   Mechanical superstructure 
The MINLP optimization approach requires the 
generation of an MINLP mechanical superstructure 
composed of various topology and design alternatives 
that are all candidates for a feasible and optimal solution. 
While topology alternatives represent different selections 
and interconnections of corresponding structural 
elements, design alternatives include different materials 
and standard dimensions. 
     The superstructure is typically described by means of 
unit representation: i.e. structural elements and their 
interconnection nodes. Each potential topology 
alternative is represented by a special number and a 
configuration of selected structural elements and their 
interconnections; each structural element may in 
addition have different material and standard dimension 
alternatives. 
     Therefore, the main goal is to find within the given 
superstructure a feasible structure that is optimal with 
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respect to topology, material, standard dimensions and 
all defined continuous parameters. 
 
 
3   MINLP model formulation 
It is assumed that a general non-linear and non-convex 
continuous/discrete optimization problem can be 
formulated as an MINLP problem in the form: 
 

min    ( )xyc fz += T
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where x is a vector of continuous variables specified in 
the compact set X and y is a vector of discrete, binary 0-1 
variables. Functions f(x), h(x) and g(x) are non-linear 
functions involved in the objective function z, equality 
and inequality constraints, respectively. All functions 
f(x), h(x) and g(x) must be continuous and differentiable. 
Finally, By+Cx≤ b represents a subset of mixed linear 
equality/inequality constraints. 
     The above general MINLP model formulation has 
been adapted for structural optimization. It is postulated 
that it helps us construct an MINLP mathematical 
optimization model for any structure.  
     In the context of structural optimization, continuous 
variables x define structural parameters (dimensions, 
strains, stresses, costs, mass...) and binary variables y 
represent the potential existence of structural elements 
within the defined superstructure. An extra binary 
variable y is assigned to each structural element. The 
element is then selected to compose the structure if its 
subjected binary variable takes value one (y=1), 
otherwise it is rejected (y=0). Binary variables also 
define the choice of discrete/standard materials and 
sizes. 
     The economical (or mass) objective function z 
involves fixed costs (mass) in the term cTy, while the 
dimension dependant costs (mass) are included in the 
function f(x). Non-linear equality and inequality 
constraints h(x)=0, g(x)≤0 and the bounds of the 
continuous variables represent the rigorous system of the 
design, loading, resistance, stress, deflection, etc. 
constraints known from the structural analysis. Logical 
constraints that must be fulfilled for discrete decisions 
and structure configurations, which are selected from 
within the superstructure, are given by By+Cx≤ b. These 
constraints describe relations between binary variables 

and define the structure’s topology, materials and 
standard dimensions. It should be noted, that the 
comprehensive MINLP model formulation for 
mechanical structures may be found elsewhere [3, 5]. 
 
 
4   Solving an MINLP problem 
After the MINLP model formulation is developed, the 
defined MINLP optimization problem is solved by the 
use of a suitable MINLP algorithm and strategies. A 
general MINLP class of optimization problem can be 
solved in principle by the following algorithms and their 
extensions:  
-the Nonlinear Branch and Bound, NBB, proposed and 
used by many authors, e.g. E.M.L. Beale [6], O.K. Gupta 
and A. Ravindran [7];  
-the Sequential Linear Discrete Programming method, 
SLDP, by G.R. Olsen and G.N. Vanderplaats [8] and M. 
Bremicker et al. [9];  
-the Extended Cutting Plane method by T. Westerlund 
and F. Pettersson [10];  
-Generalized Benders Decomposition, GBD, by J.F. 
Benders [11], A.M. Geoffrion [12];  
-the Outer-Approximation/ Equality-Relaxation 
algorithm, OA/ER, by G.R. Kocis and I.E. Grossmann 
[13];  
-the Feasibility Technique by H. Mawengkang and B.A. 
Murtagh [14]; and  
-the LP/NLP based Branch and Bound algorithm by I. 
Quesada and I.E. Grossmann [15]. 
 
 
4.1 Modified OA/ER algorithm 
The OA/ER algorithm consists of solving an alternative 
sequence of Non-linear Programming (NLP) 
optimization subproblems and Mixed-Integer Linear 
Programming (MILP) master problems. The former 
corresponds to continuous optimization of parameters 
for a mechanical structure with a fixed topology (and 
fixed discrete/standard materials and dimensions) and 
yields an upper bound to the objective to be minimized. 
The latter involves a global approximation to the 
superstructure of alternatives in which a new topology, 
discrete/standard materials and dimensions are identified 
so that its lower bound does not exceed the current best 
upper bound. The search of a convex problem is 
terminated when the predicted lower bound exceeds the 
upper bound, otherwise it is terminated when the NLP 
solution can be improved no more. The OA/ER 
algorithm guarantees the global optimality of solutions 
for convex and quasi-convex optimization problems. 
     The OA/ER algorithm as well as all other mentioned 
MINLP algorithms do not generally guarantee that the 
solution found is the global optimum. This is due to the 
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presence of nonconvex functions in the models that may 
cut off the global optimum. In order to reduce 
undesirable effects of nonconvexities the Modified 
OA/ER algorithm was proposed by Z. Kravanja and I.E. 
Grossmann [1], see also S. Kravanja et al. [2], by which 
the following modifications are applied for the master 
problem: the deactivation of linearizations, the 
decomposition and the deactivation of the objective 
function linearization, the use of the penalty function, 
the use of the upper bound on the objective function to 
be minimized as well as the global convexity test and the 
validation of the outer approximations. 
 
 
4.2 Two-phase MINLP optimization 
The optimal solution of complex non-convex and non-
linear MINLP problem with a high number of discrete 
decisions is in general very difficult to be obtained. The 
optimization is thus proposed to be performed 
sequentially in two different phases to accelerate the 
convergence of the OA/ER algorithm. The optimization 
starts with the topology optimization of a structure, 
while discrete materials and sizes are relaxed temporary 
into continuous parameters. When the optimal topology 
is found, standard materials and sizes are in the second 
phase re-established and the discrete material and 
dimension optimization of the structure is then continued 
until the optimal solution is found. 
 
 
5   Computer package MIPSYN 
The optimization of the structures is proposed to be 
carried out by a user-friendly version of the MINLP 

computer package MIPSYN, the successor of PROSYN 
[1] and TOP [2-4, 16]. MIPSYN is the implementation 
of many advanced optimization techniques, most 
important of which are the Modified OA/ER algorithm 
and MINLP strategies. In terms of complexity, the 
MIPSYN's synthesis problems can range from a simple 
NLP optimization problem of a single structure up to the 
MINLP optimization of a complex superstructure 
problem. MIPSYN runs automatically or in an 
interactive mode and thus provides the user with a good 
control and supervision of the calculations. 
GAMS/CONOPT2 (Generalized reduced-gradient 
method) [17] is used to solve NLP subproblems and 
GAMS/Cplex 7.0 (Branch and Bound) [18] is used to 
solve MILP master problems. 
 
 
5.1 Optimization models 
For each type of structure, a special optimization model 
must be developed. Each model is constructed on the 
basis of the mentioned general MINLP-G model 
formulation. As an interface for mathematical modelling 
and data inputs/outputs GAMS (General Algebraic 
Modelling System), a high level language, is used [19]. 
 
 
6   Numerical examples 
MINLP optimization approach is illustrated by two 
examples. The first one shows the material and standard 
dimension optimization of a composite floor system and 
the second one presents the topology and standard sizes 
optimization of a single-storey industrial building. 
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Fig. 1.  Cross-section of the optimal composite I beam floor system 
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6.1 Optimization of a composite floor system 
The first example presents the simultaneous material and 
standard dimension optimization of a composite floor 
system, which is made from a reinforced concrete slab 
and 25 m long simply supported structural steel beams of 
duo-symmetrical welded I sections. The floor system is 
subjected to the self-weight and the uniformly 
distributed imposed load of 2.5 kN/m2.  
     The objective of the optimization was to find the 
minimal self-manufacturing costs of the structure, the 
optimal standard thickness of steel plates for steel webs 
and flanges, the standard cross-section of the reinforcing 
steel meshes as well as the optimal concrete strength and 
structural steel grade. 
     The MINLP optimization model COMBOPT 
(COMposite Beams OPTimization) for the composite I 
beam floor system was developed for the optimization. 
A high level language GAMS was used for the 
modelling. The material and labour costs for the 
composite floor were accounted for in an economical 
type of objective function, subjected to the constraints 
for the ultimate and serviceability limit states 
(dimensioning), defined according to Eurocode 4 [20]. 
     The superstructure of the composite floor comprised 
6 different concrete strengths (C25, C30, C35, C40, C45, 
C50), 3 different structural steel grades (S 235, S 275, S 
355), 48 various standard reinforcing steel sections and 9 

different standard thickness of sheet-iron plates (from 8 
mm to 40 mm) for webs and flanges separately. 
     The MINLP optimization of the self-manufacturing 
costs was performed by the computer package MIPSYN 
(GAMS/CONOPT2 and GAMS/Cplex 7.0). The 
Modified OA/ER algorithm and the two-phase MINLP 
optimization were applied. The optimal result of 43.67 
EUR per m2 of the use surface of the composite floor 
system was obtained in the 3rd MINLP iteration. Beside 
the optimal self-manufacturing costs, the optimal 
concrete strength C25/30, steel grade S 275 (Fe 430), 
intermediate distance between I sections (the topology), 
depth of the slab and optimal standard thickness of webs 
and flanges have been obtained, see Fig. 1. 
 
 
6.2 Optimization of an industrial building 
The second example introduces the topology and 
standard sizes optimization of a single-storey industrial 
building. The building is 20 meters wide, 40 meters long 
and 6.5 meters high. The structure is consisted from 
equal non-sway steel portal frames, which are mutually 
connected with purlins. Variable imposed loads s=1.60 
kN/m2 (snow) and w=0.137 kN/m2 (wind) are defined as 
the uniformly distributed surface load. The material used 
was steel S 355. 
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Fig. 2. Optimal topology of the single-storey industrial building 
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     The task of the optimization was to find the minimal 
structure mass, the optimal topology (the optimal 
number of portal frames and purlins) and all standard 
cross-sections. 
     The MINLP optimization model FRAMEOPT 
(FRAME OPTimization) was developed. A high level 
language GAMS was used for the modelling. The 
objective function of the structure mass was defined. 
Both, the horizontal concentrated load at the top of the 
columns (wind) and the vertical uniformly distributed 
load on the frame beams (snow and wind) were 
calculated automatically through the optimization 
considering the calculated intermediate distance between 

the portal frames. Internal forces were calculated by the 
elastic first-order theory for the non-sway frame mode. 
The dimensioning of steel members was performed in 
accordance with Eurocode 3 [21] for the conditions of 
both the ultimate and serviceability limit states. 
     The industrial building superstructure was generated 
in which all possible structures were embedded by 
topology variation between 15 to 30 portal frames and 
10 to 20 purlins. The superstructure also comprised 24 
different standard hot rolled European wide flange I 
sections, i.e. HEA sections (from HEA 100 to HEA 
1000) for each column, beam and purlin separately.  
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Fig. 3. Optimal steel sections 
 

     The MINLP optimization of the structure mass was 
performed by the computer package MIPSYN 
(GAMS/CONOPT2 and GAMS/Cplex 7.0). The 
Modified OA/ER algorithm and the two-phase MINLP 
optimization were applied. The optimal result of 62.029 
tons was obtained in the 3rd main MINLP iteration. The 
optimal solution includes the obtained optimal topology 
of 15 portal frames and 12 purlins, see Fig. 2, as well as 
the optimal standard steel HEA sections of columns, 
beams and purlins, see Fig. 3. 
 
 
7   Conclusion 
The paper presents the Mixed-Integer Non-linear 
Programming approach (MINLP) to structural 
optimization. The Modified OA/ER algorithm and the 
two-phase MINLP optimization strategy were applied. 
The optimization is performed by a user-friendly version 
of the MINLP computer package MIPSYN. Beside the 
optimal structure costs or mass, the optimal topology 
with the optimal number of structural elements, the 

optimal discrete/standard materials and cross-sectional 
sizes can be obtained simultaneously. Two examples, 
presented at the end of the paper, clearly show the 
efficiency of the proposed MINLP approach. 
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