
Methods of Searching Information Using Legacy Data and Variable

Weighted Graph

JUBAEG KIM, JUNGHO PARK, DONGJOON CHA, DEOKMO KU

Department of Computer and Information Science

Sunmoon University

Tangjung-myeon, Asan, Chungnam

KOREA

Abstract: Currently, various information retrieval methods have been implemented and are used on the Internet. For

example, the existing shortest-path system obtains the information from the shortest-path database (DB), which is

constructed in advance using Dijkstra’s algorithm. However, employing a subway, if an accident disrupts the path

between any two stations, the shortest-path DB does not remain intact, and must be reconstructed from scratch using

Dijkstra’s algorithm. In this paper, we propose a more efficient shortest-path searching method that does not require

reconstructing the entire path from scratch.

And, in the case of the shortest path, the transit process may have a great influence on the shortest-path search.

Existing methods, such as Dijkstra’s algorithm, might offer unavailable shortest-path information because they do

not consider the condition of transit passengers. In this paper, we propose a variable weighted graph constructed from

information about the transit passenger’s condition. We propose a method that obtains the available shortest-path

information using a variable weighted graph. In addition, we describe our retrieval system for offering the available

shortest-path information in the light of the transit passenger’s condition.

Key-Words: Dijkstra’s algorithm, legacy data, variable weighted graph, shortest path, transit

1 Introduction
 The Internet has become an integral part of our lives,

and most of us use the Web to send and receive e-mails

and to find information. A Web site that searches for

this information is called a retrieval engine, and various

ways exist to look for information, such as by subject,

keywords, or natural language.

 Of the existing retrieval methods used to obtain the

shortest-path information, Dijkstra’s algorithm is the

most efficient. Existing systems using Dijkstra’s

algorithm obtain the shortest-path information from the

shortest-path database (DB), which is constructed in

advance by Dijkstra’s algorithm. However, consider a

railroad in the real world. An accident, such as electrical

trouble, can disrupt the path between any two stations.

Then, the existing shortest-path DB cannot be used as is.

Consequently, after the shortest-path DB is

reconstructed from scratch, the shortest path is then

retrieved and offered from the DB.

This study was supported by the Ministry of Information and

Communication of Korea under the Information Technology Research

Center Support Program supervised by the Institute of Information

Technology Assessment (IITA-2006-C1090-0603-0020).

 When an accident occurs, the original graph changes

and the new graph contain the shortest path of the

original graph, i.e., the graph before the accident. This

shortest path is the old solution. In the new graph, the

old solution cannot be used intact. In this paper, we

propose an algorithm that efficiently computes the

shortest path using the old solution, which is referred to

as the legacy data. Our algorithm does not reconstruct

the entire path for the graph after the change from

scratch. By using the legacy data, we omit the uninjured

part of the shortest path and reconstruct only the part

that was affected by the change.

 Consider the case of the shortest path in a subway.

The transit process might have a great influence on the

shortest path search. For example, pregnant women or

old people need more time in subway transit. The

previous methods, such as Dijkstra’s algorithm, might

offer unavailable shortest-path information because

they do not consider the condition of a transit passenger,

for example, the passenger’s health.

 In order to search the shortest-path information

efficiently according to the transit passenger’s condition,

we suggest a variable weighted graph that uses the

information on the passenger’s condition and the

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 161

original weighted graph. The information of the original

weighted graph consists of the transfer time between

any two stations and the transit time at any transit

station. In addition, we propose a method that offers the

available shortest-path information using the variable

weighted graph.

 Moreover, we developed a system that offers the

shortest-path information in the light of the transit

passenger’s condition. We describe our system, which

is a mobile version, but can also be used, on a PC.

2 A Method of Searching Information

Utilizing the Legacy Data
 If a starting point and destination are given, the

existing system for finding the shortest path offers the

information from the shortest-path DB, which is

constructed in advance using Dijkstra’s algorithm. If a

problem exists on the path between any two stations, the

existing shortest-path DB cannot be used in the graph

after the change. Therefore, the shortest path for the

graph after the change must be reconstructed from

scratch using Dijkstra’s algorithm.

 In this section, we present a more efficient algorithm

for computing the shortest path that uses the old

solution, which is referred to as the legacy data. In our

algorithm, we do not reconstruct the entire path for the

graph after the change from scratch. By using the legacy

data, we reconstruct only the part that was affected by

the change.

2.1 Dijkstra’s algorithm and the weighted

graph
 The existing shortest-path methods, such as

Dijkstra’s algorithm, are applied to weighted graphs, as

shown in Fig. 1. For example, the numbers assigned to

each edge in Fig. 1 indicate the transfer time between

any two stations. Dijkstra’s algorithm determines the

shortest path between the start node (node A) and the

destination node (node B) by repeatedly deciding the

shortest path for the node having the smallest sum of

edge weights among the nodes that do not form the

shortest path.

Fig. 1 An example of a weighted graph G

2.2 Our algorithm for searching information

using legacy data
 When weighted graph G becomes G' as the result of

a modification to its edges or nodes, the shortest path of

G remains in G'. It is called the old solution. At this time,

the shortest-path DB of the original weighted graph G

has already been constructed. That is, the bold lines in

Fig. 2(a) show the shortest path between the start node

and the other nodes. Suppose that edge (s, t) is deleted.

Figure 2(b) shows the weighted graph G' that arises

from G. Even if weighted graph G has been changed

into G', the shortest path information for G remains in

G' (Fig. 2(b)). We call the shortest path of G that

remains in G' the legacy data.

(a) G and its shortest path

 (b) The new weighted graph G' and the legacy data

Fig. 2 An example of legacy data

 The idea is that our algorithm promotes efficiency by

using the legacy data. In graph G', the legacy data are

divided into P and Q, and the shortest paths of the nodes

within part P are not changed, although the shortest

paths involving the nodes in part Q might change. Our

algorithm utilizes this property.

 In our algorithm, we omit the uninjured part of the

shortest path (i.e., part P) and reconstruct only the

shortest path that might have been injured by the change.

That is, we reconstruct only the path for the nodes

contained in part Q by applying Dijkstra’s algorithm.

2.3 The complexity of our algorithm
 The time complexity of Dijkstra’s algorithm on a

weighted graph G containing n nodes and e edges is

O(n
2
). Suppose that there are n' nodes in G'. Therefore,

the time complexity of the algorithm that reconstructs

the shortest path from scratch becomes O(n'
2
).

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 162

 Our algorithm repeatedly iterates the procedure that

decides only the shortest path for the nodes in part Q by

applying Dijkstra’s algorithm. This procedure has O(n')

time complexity. If the number of nodes in part Q is q

(0≦q≦n'), this procedure is repeated q times.

Therefore, the time complexity of our algorithm

becomes O(n'q). It is obvious that our algorithm is more

efficient than the method that reconstructs the entire

shortest path of G' from scratch.

3 A Method of Searching Information

Using the Variable Weighted Graph
 When we use the subway, we encounter transit

stations. Depending on the circumstances, no single

transit station is fastest. For example, pregnant women

or old people need more transit time, while a young

student does not. A method such as Dijkstra’s algorithm

might offer unavailable shortest-path information

because it does not consider that transit time can vary

with each passenger.

 Therefore, we propose a new graph: the variable

weighted graph, which considers the transit time

according to the passenger’s condition. The variable

weighted graph is an extension of a weighted graph.

 In this section, we explain the variable weighted

graph and our method that obtains the available

shortest-path information using a variable weighted

graph.

3.1 The variable weighted graph
 Suppose we have a weighted graph and the transit

time information is given (Table 1(a)). In the table, a

dash (–) indicates that there is no railroad between the

two stations, while the number indicates the basic

transit time. Since A1→A2 and A2→A1 generally

differ, the numbers in the two cells differ.

 The left side in Table 1(b) represents the basic transit

times from node K to nodes L, M, and N. The right side

in Table 1(b) represents the transit times according to

the passenger’s condition. In this case, it indicates the

passenger’s condition is good and the transit time is

halved. In the reverse case, the transit time is doubled.

Now, suppose that the path between the start node A

and node K has been decided, and the passenger’s

condition is good. Then, nodes L, M, and N become

candidates to be included in the shortest path as it is

extended. At this moment, using the information on the

passenger’s condition, the transfer times for K→L, K→
M, and K→N are changed (Table 1(b)).

Table 1 An example of transfer time

(a) Transfer time information

(b) User condition and transfer time

As a result, the variable weighted graph in Fig. 3 is

built. The weights of edges (L, K), (M, K), and (N, K)

are changed. For example, in the new variable weighted

graph, the weight of edge (L, K) becomes 4 since the

original weight is 1 and the transit time is 3. In this

manner, the variable weighted graph continues to be

changed and regenerated depending on the execution of

the algorithm.

Fig. 3 An example of a variable weighted graph

3.2 Our algorithm searches information using

the variable weighted graph
 First, the user enters the departure site and

destination, and the user’s condition information (good,

average, or bad). The basic concept behind our

algorithm is the same as that of Dijkstra’s algorithm

without considering passenger condition information.

That is, Dijkstra’s algorithm repeatedly decides the

nodes that are included in the shortest path from among

the candidate nodes.

 In our algorithm, if a transit station is not included in

the candidate nodes, Dijkstra’s algorithm is applied on

the existing variable weighted graph. If a transit station

is included, the information on transit time is renewed

using the passenger’s condition. Consequently, the

variable weighted graph is renewed, and the shortest

path keeps being extended by applying Dijkstra’s

algorithm to the renewed variable weighted graph.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 163

Fig. 4 Our algorithm using the variable weighted graph

3.3 The complexity of our algorithm
 The time complexity of Dijkstra’s algorithm on a

weighted graph of n nodes and e edges is O(n
2
). Our

algorithm checks whether transit nodes are included in

the candidate nodes at each repetition of Dijkstra’s

algorithm. If they are included, only the information on

transit time is added to generate a variable weighted

graph. To solve this problem, we need a few extra steps.

Therefore, the time complexity of our algorithm is also

O(n
2
), which is the same as that of Dijkstra’s algorithm

in Order notation.

4 Implementation of the Information

Searching System
 We implemented our algorithm search system using

a variable weighted graph to obtain the shortest-path

information. To achieve this, our system consists of five

modules: user-matching DNT (Datum Need Time

information for each subway path) extraction modules

can selectively extract user-matching DNT, including

the departure point and destination given by users from

the standard DNT, which has already been stored; a

module to analyze user input data that analyzes

individual facts (sex, age, baggage, disability, or health

index) entered by users; the RNT (Real Need Time

information for each subway path) generation module,

which reflects the user’s features and changes some of

the items in the user matching DNT according to the

peculiarities of individual users, while also generating

the RNT that reflects user’s peculiarities; a module for

selecting the subway path based on the shortest time

that deciphers the RNT, which selects the subway path

taking the shortest time from among all the subway

paths included in the RNT; and a module that provides

the optimal information on the subway paths and selects

a subway path based on the shortest time for the user.

Fig. 5 System overview

5 Conclusions
 In this paper, we proposed a more efficient

shortest-path search method that does not reconstruct

the shortest path from scratch. In addition, as in the case

of the shortest subway path, the transit process might

have a great influence on the shortest-path search.

Existing methods such as Dijkstra’s algorithm do not

offer the user suitable shortest-path information because

they do not consider the condition of the transit

passenger.

 And, we presented a variable weighted graph that is

constructed from information concerning the transit

passenger’s condition. In addition, we propose a

method that searches the shortest-path information in

the light of the transit passenger’s conditions using a

variable weighted graph. We also describe our retrieval

system, which provides the shortest-path information in

light of the transit passenger’s condition.

References:

[1] Jungho Park, Yoonyoung Park, and Sunghee Choi,

Distributed Algorithms Solving the Updating

Problems, Korea Journal of Computational and

Applied Mathematics, Vol. 9, No. 2, 2002, pp.

437–450.

[2] Christopher J. Van Wyk, Algorithms in C++,

Addison Wesley, 2001.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 164

