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Abstract: The k-median problem is one of the NP-hard combinatorial optimization problems. It falls into the
general class of clustering problem and has application in the field of classification and data mining. One has
confirmed that local search technique is the most effective and simplest method for designing the algorithms for
k-median problem, and has been looking for the more efficient algorithms which can simplify the search space of
the problem to solve the large-scale instance and obtain the high quality solution. In this paper, we first analyze the
search space of the problem by making use of fitness distance correlation method and reveal the relation between
local minima and global minima, and then we propose a more effective and efficient algorithm which gradually
scales down the size of the instance based on the intersection of local minima so that the original search space
is simplified and the better solution is found. Finally, elaborate experimental results attest the efficiency and
computational effect of the algorithm.
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1 Introduction

The k-median problem is one of the most famous com-
binatorial optimization problems. It can be stated as:
given two sets of F and C, which contain n facilities
and m cities respectively. For every facility i ∈ F and
city j ∈ C, there is a connection cost between facility
i and city j. The objective is to open a subset S ⊆ F ,
|S| ≤ k, where k is given as the input parameter, and
connect every city j ∈ C to a facility in S so that the
total connection cost is minimized.

The k-median problem has occupied the central
place in operations research and computer science.
It falls into the general class of clustering problem
and has application such as classification and rank-
ing, data mining and web information retrieving. It
is known to be the NP-hard [11], and can not be
solved in polynomial time, unless P=NP, and there-
fore is well studied in the field of approximation algo-
rithm [6, 10, 5, 1, 2, 13] in which a number of differ-
ent algorithms have been proposed for this problem
using a variety of techniques , such as LP rounding,
primal-dual method, local search and combinations of
these methods. However, the local search method is
the most effective and simplest one among different
methods. The best-known approximation algorithm
for this problem proposed by Arya [1] is based on a
simple local search procedure, and achieves 3 + ε ap-
proximation ratio. Local search method can be best

understood by interpreting the feasible solutions as
discrete points in a high-dimensional hilly landscape,
and the quality to be optimized as the corresponding
potential energy. The algorithm based on local search
proceeds iteratively, improving the solution by small
modifications step by step. The neighborhood of cur-
rent point, defined by the set of permitted modifica-
tions of the solution, is searched for points of low
energy. If such a point is found, it is substituted for
the current point, and a new search is started. Oth-
erwise, the process stops because a local minimum
has been reached. The computational complexity of
a local search procedure depends on the size of the
neighborhood and the time needed to evaluate a mod-
ification. In general, the larger the neighborhood, the
more the time one needs to search and the better the
local minima.

A crucial problem in local search method is the
local minima. Although these solutions maybe are
good enough, they are not necessarily optimal. Usu-
ally, there is almost no chance to find the optimal so-
lution as the size of problem rises. Furthermore, if
local search procedure finds a local minimum, there
is no obvious way to proceed any further toward so-
lutions of better quality. Metaheuristics [12, 15] try
to remedy that. One of the methods is Repeated Lo-
cal Search where local search is restarted from a new
arbitrary solution every time it reaches a local mini-
mum until a number of restarts are completed. The
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best local minimum found over the many runs is re-
turned as an approximation of the optimal solution.
Modern metaheuristics tend to be much more sophis-
ticated than repeated local search pursuing a range of
objectives that go beyond simply escaping from local
minima. Members of this class include Tabu Search
[9], Genetic Algorithms [16, 7], Guided Local Search
[17] and others.

In this paper, we first analyze the relation between
local minima and global minima by experiments on
instances of k-median problem in ORLIB [3]. The
results show that the intersection of some local min-
ima contains facilities in the corresponding optimal
solution with a great probability, and the size of in-
tersection of several local minima is usually larger
than 3k/4. Based on these results, we devise a new
multilevel reduction algorithm for k-median problem,
short for MRA. In MRA, we extract the intersection of
some local minima and delete some cities connected
to a facility in the intersection, then construct a new
smaller instance and call the simple local search pro-
cedure to solve it, as the new instance of k-median
problem is smaller, the local search procedure is more
efficient, finally we merge the solution to the smaller
instance into the intersection extracted before. Hence,
the solution found by MRA is improved. The pro-
cedure proceeds iteratively until the stop criterion is
satisfied. We compare MRA with Arya’s algorithm
[1], the best-known algorithm for k-median problem.
The experimental results demonstrate the advantage
of MRA over Arya’s algorithm.

The content of this paper is organized as follows.
In Section 2, we introduce a simple local search pro-
cedure for k-median problem, which is taken as the
subroutine in our final algorithm, and instances which
we used to obtain experimental results. In Section 3,
we make use of the method of fitness distance corre-
lation to analyze the experimental results obtained by
solving instances in ORLIB [3] using the simple lo-
cal search procedure in Section 2, and illustrate the
relation between local minima and global minima for
k-median problem. In Section 4, Multilevel reduction
algorithm for k-median problem based on the impor-
tant conclusion in Section 3 is presented. In Section
5, elaborate experimental results are listed. The con-
cluding remarks appear in Section 6.

2 Local Search and Instances
For the convenience of description, first the definition
of k-median problem is given formally.

Definition 1 In k-median problem, there are a set F
of n facilities and a set C of m cities, as well as an

integer k, 0 < k ≤ |F |. There is a connection cost
cij > 0 between facility i ∈ F and city j ∈ C. The
objective is to identify a subset S ⊆ F , |S| ≤ k, to
serve cities in C so that

∑
j∈C

cij is minimized, where

i ∈ S.

2.1 Local Search Procedure with Swaps
The simple local search procedure (LSS for abbrevia-
tion) used to solve k-median problem is described in
Fig.1.

An operation op is called admissible for S if
cost(op(S)) < cost(S). The only operation permit-
ted in LSS is a swap. A swap is effected by deleting a
facility s ∈ S and adding a facility s′ ∈ F − S to S.
We start with an arbitrary set of k facilities and keep
improving our solution with such swaps till it is pos-
sible to do so. At any execution of the step 2 of the
LSS in Fig 1, there will be at most a polynomial num-
ber of swaps to be checked for admissibility, and each
swap will take a polynomial time, therefore LSS will
terminate in polynomial time.

The swap is defined formally as,

op(S) = S − s + s′ for s ∈ S and s′ ∈ F − S.

and denoted by 〈s, s′〉.

2.2 Testing Instances

We select three classes of instances, ORLIB [3], SL
[14] and GR [8], as the test bed, which help us pro-
duce all experimental results and then draw the related
conclusions.

ORLIB was introduced by Beasley [3] and con-
tains a collection of test data sets for variety of prob-
lems in operations research. There are 40 instances
for k-median problem in ORLIB, and each instance is
a plane graph in which every vertex is a city as well
as a facility and the connection cost between a facility
and a city, which needs to be computed beforehand
by making use of the Shortest-Path algorithm, is the

Local Search Procedure

1.  S ← an arbitrary solution with k facilities.

2.  While ∃ an operation op such that,

cost(op(S)) < cost(S),

      do S ← op(S).

3.  return S.

Figure 1: Local search procedure for k-median problem.
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length of the shortest path between corresponding ver-
tices. The number of vertices in these instances varies
from 100 to 900, and the value of k from 5 to 200.

SL is a slight extension to ORLIB proposed by
Senne and Lorena [14]. It contains three new in-
stances, sl700, sl800 and sl900, which are based on
instances pmed34, pmed37 and pmed40 in ORLIB,
respectively, except that the values of k are 233, 267
and 300.

GR was introduced by Galvao and Revelle [8] and
first used for k-median problem by Senne and Lorena
[14], and contains two plane graphs with 100 and 150
vertices, respectively. Every vertex is equally a city as
well as a facility. The connection cost of a city to a
facility has been included in the data file. The value
of k in these instances varies from 5 to 60.

3 Analysis of Local Minima and
Global Minima

Fitness landscapes have been introduced to describe
the dynamics of evolutionary adaptation in nature [18]
and have become a powerful concept in evolutionary
theory. They are equally suited to describe the behav-
ior of heuristic search methods in optimization. Based
on the analysis of fitness landscape, researchers often
identify the structure of a given problem and design
highly effective search algorithms. Many properties
of fitness landscapes have strong influence on heuris-
tic search, such as the fitness differences between
neighboring points in the landscape, the distribution
of the local minima in the search space. Thus many
methods have also been proposed to measure these
properties. The fitness distance correlation (FDC) is
one of the methods, and is proposed to identify the
correlation between the fitness of the local minimum
and the distance of the local minimum to the global
minimum.

In k-median problem we denote the value of a so-
lution, i.e. the total connection cost, as the fitness of
the solution, and the number of different facilities be-
tween a solution and a corresponding global minimum
as the distance of the local minimum to the global
minimum.

To study the relation between local minima and
global minima, we first conduct some experiments on
instances from ORLIB. The experimental results re-
veal the following facts.

1) For a given instance of k-median problem, the
distance between local minima and global min-
ima has little relation with the fitness.

2) The local minima are found in a small fraction
of the search space, and they appear to be rel-

atively close together. The distance between a
local minimum and a global minimum is nearly
k/9, where k is the input parameter in an in-
stance. This means 90% facilities on average in a
local minimum are in the global minimum of cor-
responding instance. A similar result is shown in
the literature [4], in which this structure is called
”big valley” structure.

The above experimental conclusions motivate us
to study further the relation between the intersection
of some local minima and the global minimum. We
first test the sizes of the intersections of local minima
on some instances from ORLIB. The intersections are
based on p different local minima, where 2 ≤ p ≤ 12.
For any p, we test 50 times and compute the mean
size. Each time we use the LSS in Fig.1 to get p differ-
ent local minima and compute the number of the com-
mon facilities in these p local minima. Fig.2 shows the
results. The x axis is p, the number of local minima
which are used to get the intersection. The y axis is
the ratio of size of intersections to the input parameter
k in corresponding instances. From Fig.2, we can find
that the size of intersection of local minima decreases
as the number of the local minima increases, and the
size of the intersections is larger than 3k/4 at p ≤ 3.

Subsequently, we analyze the relation between
the intersection of local minima and global minima.
Based on the previous experimental data, we compute
the percentage of optimal facilities in the intersection,
i.e. those facilities in global minima. The results are
shown in Fig.3. The x axis is p, the number of local
minima which are used to get the intersection. The y
axis is the percentage of optimal facilities in the inter-
sections. Clearly, Fig.3 shows that the percentage in-
creases and approaches 1 as the number of local min-
ima increases.

Based on above experimental results, we get the
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Figure 2: Size of intersection of local minima.
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Figure 3: Percentage of optimal facilities in intersections.

fact that the intersection of some different local min-
ima is approximately optimal and when the number of
the local minima which are used to get the intersection
is less than 4, the size of the intersection is very large
compared with the input parameter k in corresponding
instance.

4 Multilevel reduction algorithm for
k-median problem

Based on the analysis in the above section, we propose
a new multilevel reduction algorithm for k-median
problem. In MRA we first get a subset Sp of facili-
ties which is the intersection of p local minima of the
given instance, where p > 1, and then construct a new
instance by deleting those facilities in Sp from origi-
nal set F of facilities and cities which are connected to
facilities in Sp from original set C of cities. Thus we
simplify the search space and are able to get a better
solution S′ to the small instance by using LSS. Finally
we merge Sp and S′ to get a feasible solution S∗ to the
original instance. MRA is outlined in Fig.4.

In MRA it is obvious that any partial solution
Sp will not be a feasible solution to instance I of k-
median problem (Strictly speaking, any subset of fa-
cilities with not more than k facilities is a solution to
the given instance, but customarily one only thinks of
the subset containing k facilities as the feasible solu-
tion.), however, according to the conclusions of Sec-
tion 3, the facilities in Sp belong to Sopt with a very
high probability, where Sopt is the optimal solution to
I. Thus we denote Sp as an optimally partial solution.

When instance I is very large, the search space of
I is also so rugged that a long jump in LSS can not es-
cape from the local minimum, and therefore the final
solution found is sometimes not good enough. How-
ever, the size of Sp is so large at p ≤ 3 that the new in-

Multilevel Reduction Algorithm

1.  Get a local minimum S0 to instance I = (F, C, k)

using LSS.

2.  Repeat following procedure t times, where t is

specified in advance.

2.1  Get p − 1 local minima, S1, S2, ..., Sp−1, to

instance I  using LSS.

     2 .2  Get the intersection Sp, Sp = S1 ∩ S2 ∩ ... ∩ Sp−1.

     2 .3  Construct a new small instance I' = (F', C', k')

by following procedure.

            i .  F' ← F − Sp.

           ii .  C' ← C − Cp, Cp contains cities which are

connected to facilities in Sp in the case of S0.

          iii .  k'← k − |Sp|.

     2 .4  Get a local minimu S' to I'=(F', C', k') using LSS.

     2 .5  Merge Sp and S' to obtain a feasible solution

S
*
 = Sp S' to the original instance I.

     2 .6  Run LSS again to improve S
*
.

     2 .7  If S
*

is better than S0, then S0 ← S
*
.

3.  Return S0 as the final solution to I.

Figure 4: Multilevel reduction algorithm for k-median
problem.

stance I ′ constructed in step 2.3 in MRA is small and
the search space of I ′ is smooth, which let the LSS be
easy to escape from a local minimum and more effi-
cient, thus finding the optimal solution S′ to I ′ with a
very high probability. Since the feasible solution S∗
produced by merging Sp and S′ is not necessarily a
local minimum to I, therefore the LSS must be called
on it again.

The theoretical analysis in this section shows that
the final solution obtained by MRA is better than that
of the only LSS.

5 Elaborate Experiments
To verify the effectiveness of MRA, we conduct a se-
ries of experiments on instances from ORLIB, SL and
GR. The results presented in the section attempt to
provide a comprehensive picture of the performance
of MRA on k-median problem.

We define the percentage of error of algorithm A
as follows.

A Err%(I) =
A(I)−OPT (I)

OPT (I)
× 100%,

where I is an instance of k-median problem, and A(I)
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and OPT (I) are the value of the solution obtained by
algorithm A and the corresponding optimal value, re-
spectively. The improvement percentage of algorithm
A over algorithm B is defined as:

A IP%(I) = (B Err%(I)−A Err%(I))×100%.

The bigger A IP%(I) is, the more remarkable
the performance improvement of algorithm A is.

According to the conclusions in Section 3, the pa-
rameter p, which is the number of local minima used
to obtain the intersection in MRA, is very important,
and will affect the quality of final solution. To guaran-
tee the intersection Sp contains more facilities in the
optimal solution with a high probability and the new
instance I ′ constructed in MRA is small enough, we
take p = 3. For p > 3, the running time for getting the
intersection Sp is too long so that we do not consider
that case.

We also implement the best-known algorithm for
k-median problem, Arya’s local search algorithm [1],
short for LSA, to compare with MRA and demonstrate
the effectiveness of our algorithmic idea.

All instances are tested on a Personal Computer
with Pentium IV-2.8 Ghz processor and 1G RAM. The
codes of MRA and LSA have been written in Java and
compiled with the version of JDK 1.5.0 03-b07.

The elaborate experimental results are listed in
Table 1, in which there are three parts. First part
successively indicates the name of instance, the num-
bers of facilities and cities, k and optimal value. The
second part indicates the mean value of the solution
and the mean percentage of error on 50 times test for
each instance, obtained by LSA and MRA, respec-
tively. The third part is improvement percentage of
MRA over LSA.

The experimental results are remarkable, and
demonstrate that MRA has a great performance im-
provement compared with LSA and significantly out-
performs LSA. The mean percentage of improvement
of MRA is 4.511%.

6 Conclusion
In this paper for k-median problem we first study the
relation between local minima found by a simple lo-
cal search procedure and global minima by using the
FDC analysis method and corresponding experimen-
tal results. Based on the conclusions, we propose
a new effective multilevel reduction algorithm for k-
median problem. The elaborate experiments on in-
stances from three famous libraries, ORLIB, SL and
GR, also further confirm our algorithmic idea, and
demonstrate that our algorithm is superior to the best-
known algorithm proposed by Arya [1].
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