
Incorporating applications to a Service Oriented

Architecture ∗

José A. Garćıa
University A Coruña

Department of Computer Science
josegarcia@udc.es

Antonio Blanco
University A Coruña

Department of Computer Science
blanco@udc.es

Roi Blanco
University A Coruña

Department of Computer Science
rblanco@udc.es

Abstract: How to adjust the technological expenses and how to adapt systems to business requests
aiming at improving operative efficiency have become fundamental questions for many companies. These
companies must be able to maximise their technology, processes and services, building a framework where
a Service Oriented Architecture (SOA) appears as a key element for the change.
In this paper, we present a design and implementation that allows to reuse the logic of existing applications
in a new execution environment. These applications should be able to communicate according to some
standards, based on W3C specifications. To achieve this purpose the architecture developed follows
the architectural patterns Model-View-Controller (MVC) and Layers. A modular design based on open
structures plays a crucial role to reuse each one of the subsystems needed by the company to incorporate,
orchestrate or coordinate new business processes. This way it is possible to share part of the logic already
deployed during the design phase of new business processes, avoiding high development costs.

Key–Words: Web Engineering, Web Services.

1 Introduction

Technologically, service oriented architectures
provide a new way of deploying business applica-
tions, combining real-time data with component-
based systems. The main concept incorporated
by this architecture is the interoperability of the
applications, an idea, original by Paul Allen[5],
based on developing reusable components that
allow the reduction of the software development
costs inside the environment of a company. If the
subsystems are incorporated following the SOA
architectural approach the software components
of the company can also be used by third-parties.
In our case of study (section 4), we defined a
group of facades that allowed the integration of
the application with any other process of the or-
ganisation, without any programming language or
operating system restrictions.

The organisation of this paper is as follows.
In section 2 we give a brief reference on the stan-
dards used in the project. In section 3, we present
types or layers of integration systems and we re-
view the principles of service oriented architec-
ture. In section 4 we present our case of study in
a real environment. Finally, in section 5 and 6 we

∗Partly supported by MEC TIN2005-08986

present the conclusions, as well as future lines of
research.

2 Background

In the year 2000, the W3C1 accepted the bases of
a new access protocol for simple objects (SOAP2).
SOAP is a XML-based framework for the trans-
mission of messages in businesses communica-
tions. These communications go through the
HTTP3 protocol and they incorporate a tech-
nological alternative to proprietary protocols as
Java-RMI4 and DCOM5.
Java-RMI was developed by Sun Microsystems
as a standard mechanism to allow the develop-
ment of applications based on distributed objects
within the Java platform. Java-RMI provides
an environment where distributed Java applica-
tions are able to send and retrieve remote objects.
DCOM, developed by Microsoft, allows COM ap-
plications to communicate with RPC (Remote
Procedure Call) mechanisms. Also, and during

1http://www.w3.org
2http://www.w3.org/TR/soap12-part1/
3http://www.w3.org/Protocols/
4http://www.java.sun.com/products
5http://www.microsoft.com/com/default.mspx

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 401

the following years, W3C published the specifi-
cations of WSDL6 (Web Service Definition Lan-
guage) and UDDI7 (Universal Description Discov-
ery and Integration). WSDL specifies a standard
language for the definition of web services, and
UDDI specifies the way of finding a web services
supplier.

With the definition of these three standards,
the first web services platform generation was es-
tablished. Figure 1 shows the relationships be-
tween those specifications. WSDL allows the de-
scription using a XML-based syntax, of a SOAP
accessed web service. Also, the figure shows how a
WSDL document is kept in the UDDI repository
for some external customers.

Nowadays, these organisms are trying to ad-
just the bases related to the quality of service is-
sues, to develop a second generation of the archi-
tecture.

Figure 1: Relationships between specifications

3 Integrating applications

The mechanism of tackling an integration process
should be thought as ”how will the system inside
the organisation evolve?” instead of taking an ad-
hoc approach. This means that the software de-
sign should be made in such a way that it helps
to incorporate modifications and new standardi-
sation processes. This is, a system easily adapt-
able without a high-cost transformation process.
There are four types or levels related to systems
integration:

1. Data-level integration, allows the applica-
tions to share data without necessarily in-
volving business logic. For example, the ap-
plication A receives direct access to applica-
tion B’s database, and none of application
B’s logic is involved in the transfer of its

6http://www.w3.org/TR/wsdl.html
7http://www.w3.org/TR/uddi.html

data. This integration level, in most cases,
leads to inconsistent shared data between ap-
plications, thus the poor reliability of this ap-
proach.

2. Application-level integration, allows the ap-
plication A to make a request for informa-
tion in the scope of the application B by ac-
cessing an interface or a group of interfaces
(API). This way, A accesses some already
programmed logic belonging to the applica-
tion B. The main disadvantage of this inte-
gration level is that this API can be propri-
etary, this is, when working with different
application platforms, an intermediate step
is often introduced to translate incompatible
communication protocols.

3. Process-level integration allows the merging
of two or more existing processes. The new
merge process is the result of integrating two
or more applications, through some sort of
shared-data bus. EAI (Enterprise Applica-
tion Integration) encompasses methodologies
such as object-oriented programming dis-
tributed, cross-platform communication mes-
sage brokers with CORBA (Common Ob-
ject Request Broker Architecture), and spe-
cialised middleware have made the messaging
framework model a more suitable choice.

4. Service-oriented integration introduces Web
services to establish a platform-independent
interoperability model within various inte-
gration architectures. According to the W3C
a Web service is a software system designed
to support interoperable machine-to-machine
interaction over a network. Web services sim-
ply add new components that can be used
an effectively in a wide number of architec-
tures. Web services are based on the prin-
ciples of service oriented architectures. This
is the suitable integration level in our case,
because:

(a) The interfaces should be the less tied
to a specific architecture as possible.
This way, the service and service de-
scription definitions are independent, so
there may be deployed just one descrip-
tion and many implementations. The
description defines the service structure
and indicates the type of the messages
and the signature of each operation.
The separation allows the construction
of different implementations, according

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 402

to the different performance require-
ments of the system.

(b) The way to locate these services should
be transparent to the client of those
services and they are able to locate a
specific service by just using an UDDI
repository or one service that acts as a
deployed services registry.

(c) The communication protocol could be
independent of the platform. SOAP is
a messaging protocol of messages based
on XML that follows this property.

3.1 Service Oriented Architecture

Figure 2: Elements of a SOA

Service-oriented architectures present an ap-
proach for building distributed systems that de-
liver application functionality as services to either
end-user applications or to other services. The
architecture stack is divided, according to IBM’s
vision[4], in two halves, with the left half address-
ing the functional aspects of the architecture and
the right half addressing the quality of service as-
pects, as it is shown in figure 2. Each one of the
components or layers of this architecture is de-
scribed as follows:

• Transport is the mechanism used to move
service requests between the service con-
sumer and the service provider in any direc-
tion.

• Service Communication Protocol is an
agreed mechanism that the service provider
and the service consumer use to communicate
what is being requested and what is being
conveyed.

• Service Description is an agreed schema
for describing what the service is, how it
should be invoked, and what data is required
to invoke the service successfully.

• Service describes an actual service that is
made available for use.

• Business Process is a collection of services,
invoked in a particular sequence with a par-
ticular set of rules, to meet a business re-
quirement. A business process could be con-
sidered as a service on its own, which leads to
the idea that business processes may be com-
posed of services of different granularities.

• Service Registry is a repository of service
and data descriptions which may be used by
service providers to publish their services,
and service consumers to discover available
services. The service registry may provide
other functions to services that require a cen-
tralised repository.

• Policy is a set of conditions or rules under
which a service provider makes the service
available to consumers.

• Security is the set of rules that might be ap-
plied to the identification, authorisation, and
access control of service consumers invoking
services.

• Transaction is the set of attributes that
might be applied to a group of services to
deliver a consistent result.

• Management is the set of attributes that
might be applied to manage the services pro-
vided or consumed.

At the moment, the industry is working on
developing new standards required to simplify the
implementation of service oriented architectures.

4 SOA for legacy applications

Nowadays, the introduction of SOA’s brings more
flexibility to the behaviour of the applications of
an organisation. In this work, we describe the pro-
cess of moving from a static and inflexible model
to a more adaptive one, where the standardisa-
tion of the procedures in all the layers arises as
the operational key element.

4.1 Case of study

In this section, we outline the problem of adapting
an application in an execution environment to the
new requirements of the industry, i.e. we need to
transform those business applications to the web
parties, either for private use of companies or to
offer services to others ones through the Internet.
This particular case of study targets on a legacy

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 403

application built within a MVC approach. We
were able to separate and to reuse the model layer,
common to other applications inside the company,
and to develop a framework for communicating
any other process inside and outside the organi-
sation in an uniform way.
For the client part, we built a small web applica-
tion that implemented the authentication use case
in the legacy application. This way, it is possible
to show how a legacy application is able to offer
its services in a new field and environment, with-
out leaving the support in the old one.
To tackle these requirements, we employed the
SOA architecture and web services to expose busi-
ness processes.

Figure 3: Main Approach

The controller layer of the application, estab-
lishes a communication at a web services reposi-
tory using a set of SOAP messages. The message-
passing protocol allows the retrieval of data from
the model layer of the legacy application (fig. 3).

By using SOAP as a message protocol, any
other process of the organisation is able to use this
repository transparently. This repository should
be standard and interoperable, given that the dif-
ferent deployed services might be used for applica-
tions running in different platforms. Even more,
it is guaranteed that the repository can be used
by different software manufactures due to the sup-
port of standard protocols.

Figure 4 shows an abstract diagram represent-
ing the main structure of the integration process
studied. Client applications are able to access the

Client Application Business Delegate

ServiceLocator

Session Facade

Business Component

Application Service Business Object Data Access Object

accesses

1..*

1..*

uses

0..*
looksup

accesses

1..*

looksup
1..*

accesses

1..*

uses

0..*

1..*

accesses

Figure 4: General Vision

logic of the remote service using the Business Del-
egate object. The process of communicating with
the remote application is started by the Business
Delegate structure, and it allows every client of
the legacy application to access its services with-
out the need of explicit knowledge about the com-
munication system used.
The Session Facade design pattern acts as an en-
capsulation component for the business layer, and
it sets the way of modelling the services offered
by the different corporate applications. There-
fore, every client application access the applica-
tion business layer through this facade, instead of
being directly plugged into the business logic. It
also offers to those client applications one level of
abstraction, because the same service can contain
several Business Components, this is, it is possi-
ble to take into account every combination from
many information sources inside a specific func-
tionality from the Session Facade. This function-
ality would be completely transparent for clients.

Figure 5: Alternative of implementation

As it is shown in figure 5, it is possible to
implement Business Component objects in many
different ways, according to the different encapsu-
lation criteria, or if there are any underlying im-
plementations or other applications below. The
first alternative considers the use of Business Ob-
jects as the implementation of the Business Com-
ponent; they allow the encapsulation of domain
data from this pattern and the abstraction of the
most important properties in the domain-logic ob-
jects, with the purpose of avoiding the communi-
cation with heavy objects.
Also, the Business Component object can be im-
plemented using a Data Access Object (DAO) pat-
tern that allows to hide the persistence of data
coming from the remote application. In this spe-
cific case of study, it was not strictly necessary
to implement any DAO because the information
source was accessed using controller layer facades
that were being offered by the legacy application.

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 404

Finally, Application Service can be used to im-
plement the Business Component object. This
pattern allows the centralisation and the addition
of different data acquisition environments by of-
fering a standard service layer. In the authenti-
cation use case, the Business Component object
includes the process dealing with the legacy ap-
plication and an external system. This external
system performs logging tasks and establishes the
different access rights for the users.

4.2 Analysis

One of the main tasks involved into any integra-
tion process is the correct definition of the busi-
ness requirements and the real expectations of a
project. In other words, each one of the require-
ments must be split with a high detail level, de-
composing the original problem into smaller ones.
Also, it is necessary to identify the functional re-
quirements of the system and to evaluate every
possible choice that the technology offers at this
moment.

In the analysis stage of the application, we
used the guidelines of the Unified Modeling Lan-
guage, and the methodological approach pre-
sented in [7]. This approach is based on UML[3]
and it establishes four layers representing the es-
sential points of an application that uses web ser-
vices: structure, transaction, security and work-
flow.

In the first methodology layer (Structural Di-
agram), we used the state diagrams provided by
the legacy application, as well as use case dia-
grams that offered a more detailed vision of the
actors involved in the process. This way, and
following the notation specified in the method-
ology, we describe the life cycle of the web ser-
vices: start elements, end elements, transitions
and tasks. The starting elements indicate the
execution entry points and end elements are the
processes where the composite web service termi-
nates. A transition indicates that another task
of a web service is being handled next, or that a
web service is started or terminated. Finally, a
composite task contains inner elements (task or
transitions).

In the next layer (transactional diagram), the
class diagrams developed during the integration
process were employed, but we added some re-
strictions over any class likely to have a transac-
tional behaviour, following the OCL (Object Con-
straint Language)[3] notation. In other words, for
every service that implies any modification in the
state of the legacy application model, its transac-

tional behaviour is established using the OCL.
The security and workflow diagrams are currently
being specified in the methodology. In our case,
some security problems were solved incorporating
encryption techniques in SOAP messages, using
cypher policies and WSS4J8(Web Services Secu-
rity for Java). WSS4J is a primarily a Java li-
brary that can be used to sign and verify SOAP
Messages with WS-Security information. Others
problems related to authentication were sorted
out by setting out security policies in the web ser-
vices repository.

4.3 Design

A layer-based design allows the separation of the
provider and client applications and to establish
different implementation roles, using intermedi-
ate translation and delegation components. This
is the approach followed by the communication
section of legacy applications, which they use to
access the web services repository, so full inde-
pendence between the communication and logic
layers is achieved. It is useful to have a transla-
tion and delegation layer between subsystems is
useful if any change in the communication pro-
tocol is needed, so it can be fully reimplemented
and replaced without affecting the structure of the
application, as it is shown in figure 6.

Business

 layer

Translation and

Delegation layer

Translation and

Delegation layer

Business

 layer

WSDL

customer service implementation

Figure 6: Layers design

In this particular case of study, the design
for incorporating new applications followed these
steps:

• Each group of related use cases was defined
using the Business Delegate pattern[2] to
provide a suitable data encapsulation layer
and to avoid the need of any kind of logic for
communication. Using this pattern, the busi-
ness logic in many client applications can be
reused, saving time and resources. Neverthe-
less, the pattern also hides the complexity in-
volved in the remote communication process
from the end users of the services.

As it is shown in figure 7, the Factory pat-
tern was employed to obtain a particular in-

8http://www.apache.org/wss4j

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 405

Figure 7: Service customer

stance of the facade. The obtained facade
PlainServiceFacadeDelegate implements the
delegation part in the translation and dele-
gation layer, by using an approximation of
the SOAP protocol. If it is needed to follow
a different approach, for example a CORBA
protocol, it would be required to write an
implementation of the delegation facade and
the translation and delegation layers. These
changes will be completely transparent to the
client application.
JNDI (Java Naming Directory Interface) is
used to get the right type of facade instance,
and it is included as a utility package. The
facade class, for example, shows the login
and logout methods definition implemented
in the legacy application.

• The definition of the communication process
was based on a web services and SOAP mes-
sages over HTTP protocol. This sort of com-
munication allows the definition of a stan-
dard and interoperable framework, used for
communicating a group of application with
their own service repository.
The main motivation for taking this ap-
proach to develop the communication pro-
cess is to follow groups of standards fully ac-
cepted in the business world, making inde-
pendent communications between platforms
easier. This way, a wide range of choices
opens for the customers, like the Microsoft
.NET platform or a desktop application built
with Java J2EE technology.

The definition of a group of actions that a
transactional process can implement is ex-
emplified in the figure 8. For each action
modeled we can specify if its logic implies a
transactional process, and in that case the re-
covery mechanisms for an eventual failure are
added automatically. In the particular case

Figure 8: Proxy/Wrapper Service

of the figure 8, the LoginAction action class
uses a concrete implementation of the de-
sign pattern Session Facade[2] implemented
by AgendaServiceFacadeProxy. This pattern
is included in the design because it reduced
the number of remote calls from the client
to the service provider, and it centralises the
available functionalities.
The facade is responsible of starting the com-
munication process with the repository, using
another design pattern: Service Locator [2].
This pattern, allows to find transparently and
in an homogeneous way business components
and services already deployed.

• There is a set of interfaces defined over the
web services repository, allowing the different
applications to communicate with the legacy
applications incorporated to the repository.
Using the AXIS9 project the repository inter-
faces encompassing the services are defined
almost automatically.
The use of AXIS as a web services develop-
ment tool comes mainly motivated from the
fact that the legacy application was written
in the Java language.

Figure 9: Wrapper Service

9http://www.apache.org/axis

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 406

Figure 9 shows how some of the defined in-
terfaces are deployed in the repository for en-
abling the correct communication with the
legacy application, and it also provides to dif-
ferent clients a way to locate them inside the
repository through the Service Locator [2].

• For the implementation of the services de-
fined over the repository (figure 10) the
choice was to encapsulate the communication
with the legacy application in an EJB10 con-
tainer, so some of the problems derived from
the transactional and security issues were
fixed. The use of this container is motivated
by the lack, so far, of a robust implementa-
tion inside the SOA architecture that sup-
ports security and transactional aspects, in
such a way that they are interoperable among
different platforms.

Figure 10: Service implementation

5 Future work

Future work will try to empathise the aspects re-
lated to the quality of service of the SOA architec-
ture. A new research line would try to incorporate
security based protocols on the standard specifi-
cation WS-Security11.
Another research line could try to establish se-
mantic information over deployed web services.
For the implementation of the semantic informa-
tion, we will use the WSDL-S specification, devel-
oped by IBM and University of Georgia12.
This semantic information allows to improve in-
formation manager incorporating significative de-
scriptions, classification of resources with explicit
semantic, formal models, inference rules and for-
mal verification technics.
Another research line could try to establish the

10http://java.sun.com/products/ejb/2.0.html
11http://www.apache.org/wss4j
12http://www.w3.org/Submission/WSDL-S/

dataflow of deployed services using some formal
language specification of business processes like
BPEL13.

6 Conclusions

The work presented in this paper shows how to in-
tegrate different legacy applications deployed in-
side the technological framework of an organisa-
tion, and how to build a new environment based
on current W3C standards. As well, the solu-
tion described here, aims at completely reusing
the underlying logic of the legacy applications.
This way, we are able to obtain new business pro-
cesses using a service composition principle. In
the particular case shown in this paper, we used
the authentication service as a base composition
for generating other services that incorporate new
functionalities to the original process. Another
point, is the complete interoperability of different
development platforms inside this framework. As
the communication process is based on standards,
any client is able to use the services offered by the
platform server regardless the technology it is de-
veloped with, for example J2EE (Java Enterprise
Edition), Microsoft’s .NET, or any other platform
that supports them.

References:

[1] David A. Chappel. Using Java in Service-
Oriented Architectures. O’Really. (2002)

[2] Deepak Alur, John Crupi, Dan Malks. Core
J2EE Patterns, Best Practices and Design
Strategies. (2004)

[3] OMG: The unified modeling language, ver-
sion 2.0. Specification. (2004)

[4] Mark Endrei, Jenny Ang, Ali Arsanjani.
Patterns: Service-Oriented Architecture and
Web Services. IBM Redbooks. (2004)

[5] Paul Allen, Component-based Development
for Enterprise Systems Cambridge Univer-
sity Press. (1998)

[6] Ramesh Nagappan. Developing Java Web
Services. John Wiley And Sons. (2003)

[7] Schmit, B.A., Dustdar, S.: Model-driven de-
velopment of web service transactions. In:
Proceedings of the 2nd GI-Workshop XML
for Business Process Management.

13http://www-106.ibm.com/developerworks/webservices

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 407

