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Abstract— In this paper we develop a new upper bound for 
the mean square estimation error of a parameter that takes 
values on a bounded interval.  The bound is based on the 
discretization of the region into a finite number of points, and the 
determination of the estimate by a maximum likelihood 
procedure.  It is assumed that inaccurate versions of the true 
spectra are utilized in the implementation of the maximum 
likelihood estimator. As a special case, we develop new upper 
bounds to the performance of time delay estimation schemes. 

 

I. INTRODUCTION  

The development of performance measures for parameter 
estimation schemes is an important step for evaluating the 
performance of various estimators. Due to the analytical 
difficulties involved in the evaluation of the performance 
measures of interest, several authors have developed bounds 
to the performance measures that are relevant to the 
operational quality of a system.  Within the class of parameter 
estimators from signals in the presence of noise, several 
authors in the engineering literature have applied lower 
bounds available from the statistical literature.  Others have 
developed various improved lower bounds [1, 2, 3, 4]. All of 
these have been derived under the assumption of accurate 
knowledge of the statistical models of the problem.  

In this paper we develop new upper bounds to the mean 
square estimation error.  By discretizing the parameter space, 
we relate the mean square estimation error to the probability 
of error in a two-class hypothesis testing problem.  We 
subsequently develop upper bounds to the probability of error 
when there is a mismatch between the actual and assumed 
statistical models.  To be specific, we assume that inaccurate 
versions of the signal and noise spectra are employed in the 
discrete maximum likelihood estimation scheme.  

II. THE NEW ESTIMATION BOUNDS 
Suppose that a sequence of n observations is 

available for the estimation of a parameterΔ , which is 
continuous and lies in the interval [0, D].  Let 

}...{ 1 nn yyY =

),|( ΔθnYp be 
the probability density function of Yn conditioned on a 
specific value of and a particular model parametrized byΔ θ .  
In other words, all of the parameters of the problem for which 
there may be a mismatch, are summarized inθ .  The only 
parameter we wish to estimate is , and the algorithm to be 
utilized is the Discretized Maximum Likelihood.  Instead of 

allowing

Δ

Δ to take values in the continuous interval [0, D], we 
assume that it takes only one of the m uniformly spaced 

discrete values:  }m,...,1k;kD{ 1
k =⋅=Δ −

Thus, the problem of estimating a continuous parameterΔ has 
been transformed into the problem of choosing one of m 
hypotheses.  Let Δ̂denote the estimate ofΔ , derived by the 
Discrete Maximum Likelihood (DML) procedure.  Then: 
          (1) ),|(max),|(p if ;ˆ

jnmjlknk YpY Δ=ΔΔ=Δ
≤≤

θθ

We will assume thatθ is the parameter value utilized in the 
DML estimator, while the true parameter

0θ may be distinct 
fromθ .  We will also assume that a uniform prior distribution 
is valid for the true parameterΔ , i.e.:  1)( −=Δ=Δ mp j

 The mean square estimation error for our problem is: 
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where           (3) ],ˆPr[),( jkm jkP Δ=ΔΔ=Δ=

is the joint probability of the events and
kΔ=Δ̂ jΔ=Δ , and 

depends on the decision rule chosen.  Here we assume that the 
DML has been utilized.  We observe that: 
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where is the probability of deciding  when 

is true, for a two-hypotheses case.  In other words, the 

error probability for m hypotheses has been bounded 
from above by the error probability for the two-
hypotheses problem.  The reason is that the latter can be 
bounded from above, using bounds that will be developed in 
the sequel. The mean square estimation error is bounded as 
follows: 
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Note that: 
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1
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is the average probability of error in a two-class hypothesis 
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testing problem, with the assumption that a Maximum 
Likelihood decision rule is used for testing between a pair of 
values and . kΔ=Δ̂ jΔ=Δ̂

III. DETECTION BOUNDS UNDER MISMATCH  
In this section we will develop bounds to the error 

probabilities for a two-hypotheses detection problem, when a 
suboptimal threshold type detection scheme is used.  The 
objective is to find an upper bound to the probabilities  
of (7).  Our development in the present section generalizes 
this lower bound, for the situation where there is a condition 
of mismatch or suboptimal detector structure.   

)j|k(P2

Suppose that there are two hypotheses, H1 and H0.  Let L 
be the test statistic and A the threshold value.  The decision 
rule is: 

Decide H1 if L > A, otherwise Decide H0  
We denote by P1(L), P0(L) the probability density functions 
of L under H1, H0 respectively.  The two error probabilities 
are: 
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We define the logarithms of two moment generating 
functions: 

∫
+∞

∞−

Δ

== dL)L(peln]H|e[Eln)s(M 0
sL

0
sL

0          (8) 

∫∫
+∞

∞−

−+∞

∞−

Δ

=== dLLpedJJqeHeEsM sLsJsJ )(ln)(ln]|[ln)( 1111
   (9) 

and two new probability density functions: 
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By direct calculation we can verify the relationships: 

   
dL)L(pLe)s(M)s(M 0

sL1
00 ∫

∞

∞−

−=

dJ)J(qJe)s(M)s(M 1
sJ1

11 ∫
∞

∞−

−=
 

]  H|J[E)0(M   ];H|L[E)0(M 1100 ==

0dL)L(p))s(ML()s(M s0
2

00 >−= ∫
∞

∞−  
0dJ)J(q))s(MJ()s(M s1

2
11 >−= ∫

∞

∞−  
Furthermore, we have the error probability expressions: 
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The functions M1(s), M0(s) are convex and take the value 0 at 
s = 0. 
We will now seek a bound for .  Suppose that there is a 
positive s, for which: )=A 

)0|1(2P

(0 sM

Substituting (10) in (12), we find: 
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If we define the new random variable 
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Hence, (14) takes the form: 
      (15) 
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where z is a random variable with zero mean and unit 
variance. 

The integral in (15) is less than 1, so we find the following 
upper bound: 
            (16) )]()(exp[)0|1( 002 sMssMP −≤

where s is a positive number, satisfying the equation 
 =A.                   (17) )(0 sM
We must investigate under what conditions (17) has a positive 
solution.  Note that M0(s) is convex, and M0(0) = 0.  Also: 
 =E[L|H0]. )0(0M
Thus, a necessary and sufficient condition for eq. (17) to have 
a positive solution s, is that: 
  A>E[L|H0].                  (18) 
If (18) is satisfied, the convexity of M0(s) guarantees that 
M0(s) –  and that the bound (16) is less than 1. ,0)(0 <sMs
 In a completely analogous manner, dealing with the random 
variable J rather than L, we find the expression: 
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  Ew=0,     Ew2=1. 
The value of s must be the positive solution of the equation 

AB)s(M1 −==                (20) 
assuming such a positive solution exists.  To investigate under 
what conditions eq. (20) has a positive s solution, we observe 
that M1(0) = 0, and that M1(s) is convex in s.  Also: 
 . ]H|L[E]H|J[E)0(M 111 −==

Thus, the condition for having a positive solution to (20) is 
 M1(0) < B, or:   > A .          (21) ]|[ 1HLE
Since the integral in (19) is less than 1, we have the bound: 

           (22) )]s(Ms)s(Mexp[)1|0(P 112 −≤

as where s is the unique positive solution of: 
 M 1(s) = -A 
If (21) holds, the exponent in (22) is negative, and we have a 
useful bound. 
 For the case of optimal detection, we have L = 
log[p1(x)/p0(x)] and 
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If we define M(s) = M0(s), then the two bounds (16), (22) for 
the optimal detection case, take the form: 

            (23) ]2)s(Ms)s(Mexp[)0|1(P2 −≤

           (24) )]s(M)s1()s(Mexp[)1|0(P2 −−≤

where s > 0, M (s) =A; 
 The bounds (23), (24) are a special case of (16), (22) for the 
situation of optimal detection.  They are available in the 
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literature [6, [7].  The generalized bounds (16), (19), for the 
case of mismatch, are new.   

Suppose now that the test statistic L is constructed from a 
set of observations, , distributed according to one of 
two true probability density functions, {pn(Yn|Hk); k=0, 1}.  
The test statistic L(Yn) has the form: 

nn Yyy
Δ

=)...( 1

          (25) )]|(/)|(ln[)( 01 HYqHYqYL nnnnn =
where { ; k=0, 1}, are inaccurate versions of 
{ ; k=0, 1}, respectively. 
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 The binary decision rule for testing between hypotheses H1, 
H0 based on Yn and using the test statistic L(Yn), as the form: 
 Decide H1 if L(Yn) > nA, otherwise Decide H0  
Note that the threshold is nA, which is equivalent to 
comparing against a fixed threshold A. )(1

nYLn−

The logarithms of the moment generating functions have 
the forms: 
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Suppose now that for the stochastic models under 
consideration, the limiting expressions 
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exist. Then, as n becomes large, we have the approximations: 
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 From previous arguments, we conclude that in order for the 
upper bounds (16), (22) to be less than 1, the threshold nA 
must be in the interval: 
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(32) implies that the right hand side of the inequality must be 
larger than the left hand side.  We now define the 
informational divergence measures: 
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In is nonnegative and takes the value of 0 if and only if the 
density functions pn and qn are equal almost everywhere.  
Thus, it is a measure of distance between the two densities.   
 Combining (32), (33), (28), (29), we find that (32) takes the 
form: 
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If the limiting expressions (30) exist, then the limiting 
expressions 
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exist as well [4].  In (35) we use pk, qj to denote the generic 
statistical models.  As , (34) becomes: ∞→n
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Finally, if we assume (36) to be active, the bounds (16), (22) 
take the form: 
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where the positive numbers s, v satisfy the equations: 
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and the function Mk(s) is the limiting value of n-1Mk,n(s), as 
defined by eq. (30).  The bounds (37), (38) are valid for two 
hypotheses, and are less than 1 and hence meaningful, if 
inequalities (36) are satisfied.  The threshold A can be set 
equal to zero, if the value A=0 satisfies inequalities (36).  For 
A=0, the conditions for the bounds (37), (38) to be less than 1, 
are: 
           (40) 0),(),()0( 1000

0 <−= qpIqpIM
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For this case, the bounds (37), (38) take the form: 
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Note that the log-moment generating functions M0(s), M1(v) 
are determined for a pair of statistical hypotheses.  In order to 
utilize (42), (43) in the bound (7), we must change notation. 
Let: 

 njnn
s

jnnknnn ,kj dY)H|Y(p)]H|Y(q/)H|Y(q[ln)s(M ∫
Δ

=      (44) 

               (45) 
)s(Mnlim)s(M n ,kj

1

nkj
−

∞→

Δ

=

Under the stated notation, the bound (7) becomes: 
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where: 
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 In order for values { } in the exponents of the bound 

(46) to be negative, the set of necessary and sufficient 
conditions is: 

)( kjkj sM
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for all kj ≠ ; j, k=1, …, m 
Conditions (47) require that the “approximation” qj to the real 
model pj must be closer to it than any other approximating 
model qk, in the sense of the information divergence I. 

IV. GAUSSIAN PROCESS MODELS IN DISCRETE TIME  

In this section we will consider a class of stationary 
Gaussian processes.  For the case of discrete time data, 
discussed in the previous section, {yi; i=1, …, n} is a 
sequence of d-dimensional observations of a Gaussian, 
stationary, d-dimensional process.  Let )(λkF , )(λkG , 

],[ ππλε − be the true and assumed spectral density matrix of 
the process {yi} under hypothesis Hk.  In [5], we 
demonstrated that in this case the limits (45) exist, and are 
expressed in terms of the spectra{ )(λkF , )(λkG ; k=1, …, m}.  
The expressions are of the form: [5]
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Equation (48) is valid for , where s0 is the maximum 
positive value of s for which the first determinant is positive 
for all

00 ss ≤≤

].,[ ππλε −  
The limiting expression for the informational divergence 

(35), for the Gaussian case, has the form: [5]
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The condition for all of the exponents in the bound (46) to be 
negative, is: 
            (50) jk allfor  );G,F(I)G,F(I kjjj ≠<

It should be noted that condition (50) is also necessary and 
sufficient for the mean square estimation error to converge to 
zero as .  This conclusion can be inferred from the 
theory in

∞→n
[5], where it was shown that (50) is a necessary and 

sufficient condition for the probability of error to converge to 
zero, in a multihypothesis testing situation, when inaccurate 
statistical models are used in a maximum likelihood decision 
rule.  If (50) is not satisfied, and hence: 

  jk somefor  );G,F(I)G,F(I kjjj ≠>

then as  l)j|k(P2 → ∞→n [5].  As a consequence, the mean 
square error is then bounded from below by .  )( 2

jk Δ−Δ

V. APPROXIMATIONS TO THE ERROR PROBABILITY 
 In this section we consider approximations to the error 
probabilities P2(1|0), P2(0|1), for a two-class hypothesis testing 
problem.  Our starting point is the exact expressions (14) and 
(19).  We utilize the additional assumption that the random 
variables z, w, as defined by (14a), (19a) are approximately 
Gaussian.  This situation occurs when a large number of 
samples are involved in developing the test statistics L, J, and 
thus the central limit theorem can be invoked, ensuring the 
approximate Gaussianity of z, w. 
 For Gaussian z, w, we have, from (15), (19): 
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For A = B = 0, utilizing (6) in (15), (19), we find: 
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where: = 0. Equations (52), (53) are generalizations for 
the case of mismatch, of the original expressions found in Van 
Trees 

)s(M 11

[8].  If we utilize the exact expressions (52), (53) 
instead of the bounds (37), (38) in the bounding expression 
(7) for the mean square error, we develop tighter upper 
bounds to the mean square error, under the condition of 
Gaussian test statistic.   

For the case of accurately known spectra, Weiss and 
Weinstein [9] developed lower bounds to the mean square 

estimation error in estimating a time delay between two 
sensors.  They utilize approximations to the error probability 
in a two class decision problem.  Their approximations are 
special cases of (52), (53) for the case of known statistics. 

VI. CONCLUSIONS 
In this paper we have developed a new upper bound to the 

mean square error in estimating a bounded parameter.  We 
assumed that a discretized maximum likelihood estimation 
rule was utilized, and we related the mean square estimation 
error to the probability of detection error in a two-class 
detection problem.   

The new upper bound is valid when inaccurate versions of 
the signal spectra are utilized in the estimation scheme.  We 
also establish the degree of inaccuracy that can be tolerated, 
and still attain improved performance for increasing amounts 
of observations. 

Our bounds are applicable for Gaussian statistical models, 
for both discrete and continuous time observations.  The work 
of other investigators has basically concentrated on lower 
bounds to the mean square estimation error, and under the 
assumption of exactly known statistical models.  In the 
specific case of time delay estimation [7], most of the research 
has been directed to the development of lower bounds, and the 
case of high signal to noise ratio has been mainly emphasized.  
The results of the present paper are applicable for arbitrary 
signal to noise ratio. 

Extensions and generalizations of the present results will 
be pursued in the near future.  One direction is the departure 
from purely Gaussian statistics, and the inclusion of impulse 
noise modeled as a point process.  A second direction is the 
design of robust estimation schemes for time delay estimation 
problems. 
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