
PTMD: Pairwise Testing Based on Module Dependency

Jangbok Kim1, Kyunghee Choi1 and Gihyun Jung2
1 Graduate School of Information and Communication, Ajou University,

Suwon, 442-749, South Korea
2 School of Electrics Engineering, Ajou University,

Suwon, 442-749, South Korea

Abstract: - This paper proposes a modified pairwise test case generation algorithm, named PTMD (Pairwise
Testing based on Module Dependency) algorithm. The proposed algorithm produces additional test cases that may
not be covered by the typical pairwise algorithm due to the dependency between internal function modules of
software. The additional test cases effectively increase the coverage of testing without significantly increasing the
number of test cases. The performance of proposed algorithm is evaluated with a part of function of procps[4],
which is a well-known UNIX utility utilized for displaying process information.

Key-Words: - Software Testing, Testcase Generation, Pairwise

1 Introduction

To make software dependable, various software
testing methods are widely used in the field. It is ideal
to test software with all possible combinations of input
parameters, which is not possible. The n-wise test case
generation policy is an alternative. The study in [1]
shows that testing n-tuples of parameters is enough to
detect most faults embedded in various systems, when
n is six. It means that the strategy mostly satisfies
testing requirements with smaller number of test cases
(compared with all possible cases). Especially, when
n=2, the strategy is called pairwise testing (or 2-way
testing). Pairwise testing requires that for each pair of
input parameters, every combination of valid values of
these two parameters be covered by at least one test
case.

Several ways have been proposed for implementing
the policy. Covering array is a mechanism containing
a list of test cases satisfying n-wise test case
generation policy [7]. Many combinational test case
generation algorithms have been studied for creating
covering array. The well-known orthogonal Latin
square concept was first introduced for creating
covering array by Mandl[6]. Brownlie et al. and
Williams et al. also used the orthogonal Latin square
for creating covering array for interaction test.[9,10]
In [3,8], Cohen et al. proposed Automatic Efficient
Test Generator (AETG) System. AETG system adopts
an algorithm to generate all possible pairs of input
parameters. The system uses a greedy approach to
select input parameters in a fashion that can minimize

uncovered pairs. Kuo-Chung Tai et al. introduced
In-Parameter-Order (IPO) algorithm in [2]. IPO
algorithm generates Pairwise test cases using the first
two input parameters among many input parameters
and then generates other cases adding other input
parameters. James Bach built a test case generation
tool, named Allpairs, utilizing PERL [5]. Allpairs, that
satisfies the philosophy of pairwise testing, also uses a
greedy approach. But Allpairs generates test cases
with input parameters that have been used least
frequently.

Though pairwise testing generates a small number
of effective test cases, it does not produce test cases
considering the dependency between internal modules
of systems. We say that there is a dependency between
internal modules of a system, S, when an output of a
module is an input of other module of S. For example,
let a system S have three input parameters {X,Y,Z}
and two modules, op1 and op2. X and Y are the inputs
of op1 and W is an output of op1. That is, W=op1(X,Y).
If W and Z are inputs of op2, then we say that there is a
dependency between op1 and op2. In the case that there
is a dependency between internal modules, the test
cases generated by pairwise testing strategy may not
include some pairs that are sometimes crucial to test
systems. A system with module dependency can be
modeled as a tree structure. For instance, let a system
S with three Boolean input parameters, {X,Y,Z}. S is
expressed as S = (X and Y) and Z. Fig 1 illustrates the
tree structure showing the dependency between two

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 341

modules. op1 and op2 are both “and” operation in the
example. op2 also acts as the root of tree structure.

Fig. 1. Tree structure with the dependency between
function modules.

X Y W Z
T T T T
T F F F
F T F F
F F F T

Table 1. Pairwise test cases

The typical pairwise testing algorithm generates

four test cases for S as depicted in Table 1. Values of
W generated by X, Y pairs are also shown in the Table.
For testing op2 module with a pairwise testing strategy,

we need four test cases generated with W and Z.
However, one pairwise test case (W, Z) = (T, F) is
missing in the table. The case (X,Y,Z) = (T,T,F) has to
be added to the table.

This paper proposes a modified pairwise testing
algorithm, that generates pairwise test cases taking
account of dependency between internal modules of
software systems. The modified algorithm increases
testing coverage without significantly increasing the
number of test cases, compared with that of the typical
pairwise testing algorithm. The paper also presents the
outcome of empirical study to show the feasibility of
proposed algorithm.

Chapter 2 presents the philosophy and details of our
proposed algorithm. The way that the algorithm works
is explained through an example in Chapter 3. The
performance evaluation also described in Chapter 3.
Finally, the paper is wrapped up in conclusion.

2 Proposed Algorithm

As shown in Alg 1, the proposed algorithm consists
of three main parts: test case generation by pairwise
strategy, test case generation considering module
dependency and merging the two test case sets. The
pseudo code of proposed algorithm applying to a
system S, which is modeled as a tree structure, looks
like Algorithm 1. Here are the definitions of notations
used in the algorithm description. nd is a node

PTMD algorithm (S)
Apply a pairwise algorithm to S and get test case set PT;
Let TC(root of S) be a test set generated by applying ForOneNode to the root of S;
Merge PT and TC(root of S);

Procedure ForOneNode (nd)
if nd is a leaf node then

TC(nd) = {(nd,v1(nd)) , (nd,v2(nd)) , …, (nd,vN(nd)(nd))}
else

for each child node Ci of nd do
 build TC(Ci) by calling ForOneNode(Ci) recursively;
for each ti =(C1,vi(C1)) (C2,vi(C2))…(C N(nd),vi(nd)) in PW(C1,C2,…,CN(nd)) do

 construct a test case tnd by replacing every (Ck,vi(Ck)) in ti with
 tci ∈TC(Ci) such that output(Ci,tci) = vi(Ck) ,and mark tci as covered;

 insert tnd into TC(nd);
 end for

while there exist uncovered test cases tci in any TC(Ci) do
construct tnd by concatenating tci with any test cases in TC(Cj) for j(≠i)=1,2,i-1,i+1,..,N(nd),

and mark those test cases as covered;
insert tnd into TC(nd)

end while
end if

Alg 1. Pseudo code of the modified Pairwise algorithm

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 342

(operator). vi(nd) is the ith output value of nd. If nd is a
leaf node (that is, nd is an input parameter of system),
vi(nd) becomes the ith value of itself and N(nd) is the
number of parameters that nd has. Otherwise, Ci
becomes the ith child node of nd and N(nd) is the
number of child nodes of nd. By a test case t=p1p2p3…,
we mean a sequence of (parameter, value) pairs pi. For
example, t= (X,T)(Y,T)(Z,F) denotes a test case, where
X, Y and Z are parameters, and T and F denote their
values. The expression (X,Y,Z) = (T,T,F) in the
previous example is expressed as (X,T)(Y,T)(Z,F) in
the algorithm for convenience. output(nd,t) denotes
the value to be produced when t is applied to nd.
PW(nd1,nd2,…) is the set of test cases for the output
values of nd1,nd2,… produced by the typical pairwise
testing algorithm like AETG or IPO [2,3]. In the above
example, PW(C1, C2) = {(W,T)(Z,T), (W,T)(Z,F),
(W,F)(Z,T), (W,F)(Z,F)}.

2 Performance Evaluation

3.1 A system example with module

dependency
UNIX systems use procps utility to show process

information. Since it is too complicated to describe the
whole function of procps, we simplified the function
without hurting the way it runs. procps activates
processes depending on the selected options. There are
seven allowable options, which are ‘-e’, ‘-a’, ‘-d’, ‘T’,
‘a’, ‘g’, ‘r’. Table 2 shows how procps behaves
depending on different options.

Input

options
Description

-e selects all processes
-a selects processes on a current terminal

without session leader
-d selects processes without session leader
T selects processes on this terminal
a selects all processes on a terminal,

including those of other users
g selects all processes with current user,

including session leader
r restricts output to running processes

Table 2. Description of input options

The options are used either separately or together.
When multiple options are used, the options have
priorities and some options are not allowed to be used

together. Fig. 2 illustrates how the processes are
selected with the options.

L1:
L2:
L3:
L4:

L5:
L6:
L7:
L8:
L9:
L10:
L11:
L12:
L13:

S = NULL;
Get ST, Sg, Sa, S-a, S-d, S-e;

if (-a=true || -d=true) && (a=true||
g=true) then return error;
if T = true then S := S ∪ ST;
if g = true then S := S ∪ Sg;
if a = true then S := Sa;
if -a = true then S := S ∪ S-a;
if -d = true then S := S ∪ S-d;
if -e = true then S := S-e;
if r = true then S := running processes in
S;

return S;

Fig. 2 Process selection in procps

S is the set of processes selected by the options. ST,
Sg, Sa, S-a, S-d, S-e are the processes selected by options
‘T’, ‘g’, ‘a’, ‘-a’, ‘-d’, ‘-e’ and ‘r’, respectively. L4
indicates that option pairs (‘-a’ and ‘a’), (‘-a’ and ‘g’),
(‘a’ and ‘-d’) and (‘-d’ and ‘g’) cannot be applied. L5 ~
L11 indicate that the processes are selected by the
corresponding options, regardless of other options.
Option ‘r’ selects the processes currently running in a
system.

Fig. 3 Module dependency tree of procps

Fig 3 shows a tree structure considering the module

dependencies of processes in procps. What we mean

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 343

module dependencies here is which processes should
be selected prior to other processes and which
processes need to be selected without taking into
account of selecting other processes. In the figure,
NDL4.1, NDL4.2 and NDL4.3 are ‘and’, ‘or’ and ‘or’
operators, respectively. They present the way to select
processes in L4 of Fig 2. NDL5,L6 is a ‘union’ operator
in L5 and L6 of Fig 2. NDL7, NDL10 and NDL11
corresponds to L7, L10 and L11, respectively. NDL8,L9.1
and NDL8,L9.2 are ‘union’ operators and correspond to
L8 and L9. The root node returns ‘error’ if NDL4.1 is
‘true’. Otherwise the root node returns the outcome of
operator NDL11. Table 3 summarizes the actions of
nodes.

Node Operation
Root if NDL7 = TRUE then return error;

else return NDL11;

NDL11 S:=running processes in NDL10;
return S;

NDL10 if -e=true then S:=S-e;
else S:=NDL8,L9.2;
return S;

NDL8,L9.2 S:=NDL8,L9.1 ∪ NDL7;

return S;

NDL7 if a=true then S:=Sa;
else S:=NDL5,L6;
return S;

NDL5,L6 S:=NULL;
if t = true then S:=St;
if g = true then S:=S ∪ Sg;
return S;

NDL8,L9.1 S:=NULL;
if –a = true then S:=S-a;
if –d = true then S:=S ∪ S-d;

return S;

NDL4.1 if NDL4.2=true and NDL4.3=true then
return true;
else return false;

NDL4.2 if -a = true or -d = true then return true;
else return false;

NDL4.3 if a = true or g = true then return true;
else return false;

Table 3. The actions of nodes

3.2 Comparing the number of test cases

The input parameters ‘-e’,‘-a’,‘-d’,‘T’,‘a’,‘g’,‘r’
have either ‘true’ or ‘false’ values. Therefore the

number of all possible cases is 128. A Pairwise test
case generation mechanism, Allpairs, generates 8
cases. And the proposed test case generation algorithm
generates 48 cases. That is, the proposed algorithm
generates about 40 more test cases than the pairwise
test case generation algorithm, for taking care of the
dependencies among modules.

3.3 Comparing the fault detection coverage

To see how much more the proposed algorithm

increases the coverage of testing with the increase in
the number of test cases, we intentionally inserted
various faults in the procps model and compared the
number of faults found with the test cases by the
proposed algorithm and a typical Pairwise algorithm,
Allpairs.

Before After Modified

== !=
|| &&

&& ||
ST “Sg”, “Sa”, “S-a”, “S-d”, “S-e”
Sg “ST”, “Sa”, “S-a”, “S-d”, “S-e”
Sa “ST”, “Sg”, “S-a”, “S-d”, “S-e”
S-a “ST”, “Sg”, “Sa”, “S-d”, “S-e”
S-d “ST”, “Sg”, “Sa”, “S-a”, “S-e”
S-e “ST”, “Sg”, “Sa”, “S-a”, “S-d”

Table 4. Modification in processes and operators

We generated three different types of faults. And we
measured the number of faults the two test cases found
in the procps module containing the generated faults.
The first fault type was generated by modifying the
processes or operators in L4 ~ L11 of Fig 2. Table 4
summarizes the details of modification. This fault type
mimics typos possibly occurred during coding.

The second fault was generated by exchanging the
order of conditions and their corresponding actions.
This fault type mimics programmer’s
misunderstanding the logic. With this type faults,
procps may operate quite differently and sometimes
this type of faults can down system. The last fault type
was made by deleting the conditions and actions,
which imitates programmers’ mishandling the
program. Combining the three fault types, we injected
80 faults in the modeled procps.

Table 5 illustrates the numbers of test cases and the
faults found by the test cases generated by the

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 344

proposed algorithm, a typical pairwise algorithm and
all possible combinations.

 Proposed Pairwise All
combinations

No. of
test

cases
48 8 128

No. of
found
faults

71 27 76

Table 5. Number of average test cases and found
faults

Since proposed algorithm adds extra test cases to

those generated by the pairwise algorithm, it is natural
that proposed algorithm found more faults that the
pairwise algorithm. By including about 40 tests cases
more to those by the typical pairwise algorithm, it was
possible to find 44 more faults that would not have
been found if the extra cases were not tested. The
faults found by the extra effort may be sometimes
serious and critical.

Considering that executing more test cases is not a
big deal at all in most recent fast systems, it may be
worth to test some more cases if the extra test cases
significantly improve the quality of software system.
One interesting thing in the above example is that four
intentionally inserted faults cannot be found even with
all combinations. That is, even all possible input
parameter combinations cannot find some faults. For
example, the faults inserted by exchanging L4 with L5
produce the same outputs but they are different.

4 Conclusion

This paper proposed a test case generation
algorithm that covers up a blind spot of the typical
pairwise testing algorithm. The proposed algorithm
generates additional test cases, considering the
dependencies among function modules in software.
The performance of proposed algorithm is compared
with that of the typical pairwise algorithm using a
simplified procps utility. By adding more test cases to
those generated by the typical pairwise algorithm, the
proposed algorithm can find some forbidden faults
that may be serious sometimes.

However, one of obstacles to use the proposed
algorithm is that test people need to know the
dependencies between software modules. However,
usually many delicate systems are tested by people

who know the systems in detail. Thus, the obstacle
may not be that serious in the real world.

References:
[1] D. Richard Kuhn, Dolores R. Wallace, and Albert
M. Gallo Jr., Software fault interactions and
implications for software testing, IEEE Transactions
on Software Engineering, Vol. 30, No. 6, June 2004,
Page(s):418 – 421.
[2] Kuo-Chung Tai and Yu Lei, A Test Generation
Strategy for Pairwise Testing, IEEE Transactions on
Software Engineering, Vol. 28, No. 1, January 2002,
Page(s):109-111.
[3] D. M. Cohen, Siddhartha R. Dala, Michael L.
Fredman, and Gardner C. Patton, The AETG System:
An Approach to Testing Based on Combinatorial
Design, IEEE Transactions on Software Engineering,
Vol. 23, No. 7, January 1997, Page(s):437-444.
[4] Procps, http://procps.sourceforge.net
[5] James Bach, Allpairs, http://www.satisfice.com
[6] R. Mandl, Orthogonal Latin Squares, An
Application of experiment design to compiler testing,
Communications of the ACM, 28(1), October 1985,
1054-1058
[7] M.B Cohen., P.B. Gibbons, W.B. Mugridge and
C.J. Colbourn, Constructing test suites for interaction
testing, Software Engineering, 2003. Proceedings.
25th International Conference, May 2003, 38-48.
[8] D.M. Cohen, S.R. Dalal, M. L. Freedman, and G.C.
Patton, Method and system for automatically
generating efficient test cases for systems having
interacting elements, United States Patent, Number
5,542,043, 1996.
[9] R. Brownlie, J. Prowse, and M. S. Padke, Robust
testing of AT&T PMX/StarMAIL using OATS, AT&T
Technical Journal, 71(3), 41-7, 1992.
[10] A. W. Williams and R. L. Probert, A practical
strategy for testing pair-wise coverage of network
interfaces, In Proc. Seventh Intl. Symp. on Software
Reliability Engineering, 1996, 246-254.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 345

