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Abstract: — Outlier detection is an important task in many applications; it can lead to the discovery of unexpected, 
useful or interesting objects in data analysis. Many outlier detection methods are available. However, they are 
limited by assumptions in distribution or rely on many patterns to detect one outlier. Often, a distribution is not 
known, or experimental results may not provide enough information about a set of data to be able to determine a 
certain distribution. Previous work in outlier detection based on area-descent focused on detecting outliers which 
are solely isolated; it can not detect the outliers clustered together. In this paper, we propose a new approach for 
outlier detection based on two-stage area-descent of convex-hull polygon. It not only detects outliers clustered 
together but also shows their location related to the data set. Instead of removing the outlier, this relative location 
provides a suitable direction for moving the outlier to reduce its effects to linear regression. In addition, this 
method does not depend on the distribution of data set. 
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1 Introduction 
For many applications, finding outliers play an 
important role in data collection and analysis. It can 
be more interesting than finding the common 
patterns. Outliers have been defined informally as 
data points that are inconsistent with the remainder of 
data set [1], [2], or observations that deviate so much 
from other observations as to arouse suspicions that 
they were created by a different mechanism [3]. 
Outlier detection has become an important problem 
in many applications, such as assessment of meter 
systems, data mining [4], microarray data [5], credit 
card fraud detection, weather prediction, marketing 
and customer segmentation, and so on. The outlier 
detection has also been an important part in the 
regression.  

Many schemes for outlier detection have 
proposed by researchers [1], [4], [6]-[11]. The early 
outlier detection methods were based on distribution 
of the dataset [1]. However, in practice, the 
distribution is not always known. Knorr E.M. et al 
proposed a method based on distance [11]. Their 
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method overcame the prior knowledge of 
distribution, but it can not work well when the data 
set does not have a uniform density globally. Breunig 
M.M. et al proposed an approach to measure the 
strength of an object to be outlier, which is based on 
the nearest neighborhood for mining local outliers 
[4]. Brett G. Amidan et al proposed outlier detection 
using Chebyshev theorem [9]. This method uses the 
Chebyshev inequality to calculate upper limit and 
lower limit of an outlier detection value. A method 
for spatial outlier detection was proposed by Shekhar 
et al [8], [10]. It is based on the distribution property 
of difference between an attribute value and the 
average attribute value of its neighbors. This method 
had improved by Chang-Tien Luu et al with multiple 
attributes and multi-iterations that focus on detecting 
spatial outliers in graph structured data sets [6], [7].  

Most previous methods for outlier detection are 
limited by assumptions of a distribution, which are 
based on many data points and do not provide a 
candidate direction to eliminate the outliers. In the 
regression, shifting outliers can also obtain a better 
result than removing them. The previous work on 
outlier detection based on area-descent detected 
outliers which are solely isolated; it could not detect 
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outliers that construct a group with a small number of 
data [12]. 
In this paper, we present a new approach to detect 
outliers based on the two-stage area-descent of 
convex-hull polygon. It does not depend on the 
distribution of data set and can detect outliers which 
are in a small group of data. 

The rest of this paper is organized as follows. 
Section 2 reviews related works in outlier detection. 
In section 3, we present our new approach to identify 
outliers based on area-descent. The experimental 
results and analysis are shown in section 4.  Finally, 
we make a conclusion in the section 5. 

2 Related works 
Most of the early studies on outlier detection are 
based on statistics [1]. However, in many 
applications, the distribution is not always 
obtainable. This limitation is overcome with the 
distance-based approach proposed by Knorr and Ng. 
[11]. 

• Distance-based outlier detection 
A data point in a data set D is an outlier if its 
neighborhood contains less than pct% of the data set 
D. This approach detects certain kinds of outliers. 
Because it takes a global view of the dataset, these 
outliers can be viewed as global outliers. Therefore, 
it only works well for global uniform density, and 
can not work well when the subsets of data have 
different densities. This problem is surmounted by a 
formal definition of local outliers and a density-based 
scheme proposed by Breuning et al [4]. 

• Density-based local outlier detection 
This method uses the “local outlier factor” LOF to 
measure how strong a point can be an outlier [4]. 
This scheme can not work well for gradually sparse 
distribution or density-based clusters that are so 
closed each other. 

• The Chebyshev outlier detection 
Another method for outlier detection is based on 
Chebyshev theorem proposed by Brett G. Amidan et 
al [9]. This method uses the Chebyshev inequality to 
calculate upper limit (ODVu) and lower limit (ODVl) 
of an outlier detection value. A data with the value 
that are not within the range of the upper and lower 
limits would be considered as an outlier. If the 

distribution of data is non-unimodal, this method 
may not work well. 

Most of former methods do not give any 
positional information of outlier relative to the 
dataset from which propose a proper shift direction to 
reduce its effects. Hence, outliers detected by these 
methods have to be deleted from the dataset instead 
of moving them. 

• Area-descent-based outlier detection 
An approach based on area-descent of convex-hull 
polygon to detect outliers proposed in our previous 
work [12]. It can detect outliers relying on only two 
adjacent points on the polygon and shows their 
location related to the dataset which can infer a 
proper shift to reduce their effects on linear 
regression. 

The symbols and notations used for reviewing 
our area descent method are shown in the Table 1. 

Table 1: Symbols and Notations 
Symbol Definition 

P 2D point set 
Pi Data point in P 
K Convex hull polygon 
Qi Data point in K 
S Area 
ΔS Area descent 
Θ Threshold 

 
Suppose n measurements (attribute values) y1, y2,…, 
yn (n≥1) are made on the referential object x={x1, 
x2,…,xn}. Let P={P1, P2,…,Pn} be a 2D point set 
corresponding to measurements, i.e. Pi=(xi, yi). 

Firstly, the convex hull polygon is determined; it 
consists of the most outside points in the data set. Let 
denote a polygon by K={Q1, Q2,…,Qk} where K⊂P, 
Qi∈P and k≪n. Let also denote the area of convex 
hull polygon as S.  

 
Fig. 1: Detecting outliers by the area descent 
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For each point Qi on the polygon K, let Si denote the 
convex-hull area of point set without Qi. If the 
difference between S and Si is larger than a threshold 
θ, i.e. ΔSi=S-Si>θ (*), then Qi can be viewed as an 
outlier candidate. There may be many outlier 
candidates for each polygon K causing many Qi 
which satisfy condition (*). Depending on application, 
all of these candidates will be outliers or only 
candidates whose area descent is maximum will be 
outliers, i.e. Qh is viewed as an outlier if 
ΔSh= is larger than the threshold θ.  An 

outline of algorithm for detecting outliers is 
described as following: 

max{ }i
Qi

S
∈

Δ
K

An algorithm for detecting outliers: 

1. Detect convex-hull polygon K and its area, S, 
from point set P. 

2. For each point Qi∈K, compute P’=P-{Qi}, 
Si=area of convex-hull polygon of P’, and 
ΔSi=S-Si. 

3. Compute ΔSh= . max{ }i
Qi

S
∈

Δ
K

4. If ΔSh > θ then 
- Qh is an outlier. 
- Remove Qh from point set P, goto step 1. 

5. If ΔSh ≤ θ then stop. 
 

Let we call this algorithm as one-stage algorithm. It 
can accurately detect outliers that are solely isolated. 
However, it can not detect outliers that are in even a 
small group, because their area-descent is too small 
to pass the predefined threshold. For instance, a 
simple dataset shown in the Fig. 2 consists of 100 
points and two outliers o1 and o2 which are very 
closed each other making a small group. 

 
Fig.2: A simple dataset with closed outliers 

The value of the area descent corresponding to o1 
will be smaller than that of the other points on the 
polygon K. Hence, o1 can not be detected as an 
outlier and thus o2 can also not be for subsequent 
iterance. 

To overcome this problem, we propose a two-
stage area descent algorithm which is detailed in the 
following section. 

3 Two-stage area-descent outlier 
detection 

In this section, we propose a new method to resolve 
above issues related with outlier detection based on 
the area-descent. This method bases on two-stage 
area-descent to detect outliers, it consists of two 
stages. In the first stage, outliers which are solely 
isolated are detected using the area-descent algorithm 
that is the same as the algorithm described in the 
previous section [12]. The second stage will start 
when there is no data point that its area-descent is 
larger than the threshold θ, outliers clustered together 
will be detected in this stage. In the second stage, we 
withdraw a subset O consisting of the most outside 
points of the data set and outliers detected in the 
second stage should be in this subset. The 
withdrawing of the subset O consists of two 
procedures which are repeated: determination of 
convex hull polygon Ki and remove of the data points 
involved in constructing Ki. i = 1, 2,…. The subset O 
is calculated by O= . These two procedures will 

stop when the total number of data points in the 
subset O exceeds a pre-defined threshold value pts, 
let m denote the number of the convex-hull polygon 
detected in this stage. Thus, polygons Ki, i=1, 2,…, 
m, included in the subset O contain outside points of 
the dataset and all outliers detected in the second 
stage should be in these polygons. 

i
i
∪K

Detecting outliers in the second stage is 
performed from the polygon Km-1 to K1. In which, 
detecting outliers on the polygon Ki based on area-
descent is similar to that in the first stage. However, 
in this stage, the polygons are first determined as 
previously explained. An algorithm for detecting 
outliers consisting of two stages is described as 
following: 

The two-stage algorithm for detecting outliers: 

Stage 1: 
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1. Detect convex-hull polygon K and its area, S, 
from point set P. 

2. For each point Qi∈K, compute P’=P-{Qi}, 
Si=area of convex-hull polygon of P’, and ΔSi=S-
Si. 

3. Compute ΔSh= . max{ }i
Qi

S
∈

Δ
K

4. If ΔSh > θ then 
- Qh is an outlier. 
- Remove Qh from point set P, go to step 1. 

5. If ΔSh ≤ θ go to step 6. 

Stage 2: 

6. Find a convex-hull polygon K1 from point set P. 
7. Compute P=P-K1, O=K1. 
8. Set i=2. 
9. Repeat 

a. Find a convex hull polygon Ki from P. 
b. Compute P=P-Ki. 
c. O=OUKi. 
d. i=i+1. 

10. Until the amount of data points in O larger than 
pts% of the data set . 

11. Set Pm=Km. 
12. For i=m-1 to 1 do begin 

a. Compute Pi=Pi+1UKi. 
Repeat 
b. Compute S=area of convex-hull polygon of Pi. 
c. For each point Qj∈Ki, compute P’=Pi-{Qj}, 

Sj=area of convex-hull polygon of P’, and 
ΔSj=S-Sj. 

d. Compute ΔSh= . max { }j
Q j i

S
∈

Δ
K

e. If ΔSh > θ then 
- Qh is an outlier. 
- Remove Qh from point set Pi. 

Until ΔSh ≤ θ.  
End for. 

4 Experiments 

4.1 Data description 
Data sets used in our experiments are similar to data 
sets in [12], which consist of three data sets with 
known outliers to evaluate the performance of our 
method. Each data set contains 100 samples with 5 
outliers labeled #1, #2, #3, #4, #5 as shown in the Fig. 
3. 

 
(a) outliers are solely isolated 

 
(b) outliers are not isolated 

 
(c) non-uniformly distributed samples 

(outliers are isolated) 

Fig.  3: Three data sets with known outliers 

The samples in dataset-1 are uniformly distributed 
with isolated outliers, the dataset-2 is similar to 
dataset-1 but outliers #2 and #3 are close to each 
other making a group of 2. Dataset-3 consists of non-
uniformly distributed samples which are similar to 
difference between some meter system results and 
primary reference instrument [13]. 

4.2 Results and Analysis 
We evaluate our proposed method by comparing with 
the distance-based method [11], the density-based 
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method [4], the Chebyshev Outlier Detection method 
[9], and our method formerly proposed in [12]. The 
detailed results are listed in the Table 2. The 
parameters of the methods are set so that they detect 
the maximum number of outliers without false 
positives. 
 

Table 2: Comparative results 

Dataset Dataset-1 Dataset-2 Dataset-3 

Area 
descent 

(one-stage) 

1, 2, 3, 4, 
5 

1, 4, 5 1, 2, 3, 4, 
5 

Area 
descent 

(two-stage) 

1, 2, 3, 4, 
5 

1, 2, 3, 4, 
5 

1, 2, 3, 4, 
5 

Distance-
based 

1, 2, 3, 4, 
5 

1, 2, 3, 4, 
5 

3, 5 

Density-
based 

1, 2, 3, 4, 
5 

1, 2, 3, 4, 
5 

1, 2, 4, 5 

Chebyshev 
1, 2, 3, 4, 
5 

1, 2, 3, 4, 
5 

2, 3, 5 

 
From the results on simulation data, we can see that 
the isolated outliers in the data set which has uniform 
distribution are detected accurately by all methods as 
shown in the column Dataset-1 in the Table 2. In the 
dataset-2, the outliers #2 and #3 are close to each 
other, so the former area-descent approach can not 
detect these outliers, caused by their area-descent is 
not small enough for detecting. It considers these 
outliers as another sub-datasets. However, the two-
stage approach can detect these outliers accurately. 

In the dataset-3, the distribution is non-uniform 
being similar to the assessment results from 
biological or medical systems [13]. The distance-
based method can only detect outliers #3 and #5. 
With outliers #1, #2, and #4, their neighborhood 
contains more than pct% of dataset. If we increase 
the pct value, it will detect some inliers as outliers in 
the sparse region of data set. 

The density-based method does not detect outlier 
#3 in the dataset-3 which lies in the sparse 
distribution region. Distances between them and their 
neighbors are quite small compared to distances 
among their neighbors. The Chebyshev outlier 
detection method does not detect outliers #1 and #4 
in the dataset-3. 

As shown in the Table 2, our proposed method 
can detect accurately all pre-known outliers which 
are solely isolated or clustered together. The results 
also show that our method is superior to other outlier 
detection method for linear regression. In addition, it 
also shows positional information of outlier relative 
to the dataset from which propose an appropriate 
shift direction to reduce its effects on linear 
regression instead of removing. 

5 Conclusion 
In this paper, we propose a new approach improved 
from [12] for the outlier detection based on the area-
descent of convex-hull polygons. It can detect 
outliers clustered together and be much simple that is 
not dependent upon knowing the distribution of the 
data but can provide a suitable direction to eliminate 
effects of outliers on the linear regression. 

It is well-known that many algorithms of 
bioinformatics are great help for clinical 
performance. These algorithms analyze automatically 
the collected data and help for the therapy revision as 
well as for the overall assessment of the patient’s 
behaviors. However, during data collection and 
analysis there are exist outliers in the dataset. The 
motivation for our research is to detect and eliminate 
the outliers to get a better regression to compensate 
the measurement error of bio-optical signal 
acquisition system. 
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