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`Abstract: -A fuzzy linear state estimation model is employed, which is based on Tanaka's 
fuzzy linear regression model, for modeling uncertainty in power system state estimation.  
Both measurements uncertainty as well as parametric uncertainty is considered by fuzzy 
estimator.  The uncertain measurements and the parameters are expressed as fuzzy numbers 
with a triangular membership function that has middle and spread value reflected on the 
estimated states.  The proposed fuzzy model is formulated as a linear optimization problem, 
where the objective is to minimize the sum of the spread of the states, subject to double 
inequality constraints on each measurement.  Linear programming technique is employed to 
obtain the middle and the symmetric spread for every state variable.  The estimated middle 
corresponds to the value of the estimated state, while the symmetric spreads represent the 
tightest uncertainty interval around that estimated states.  Preliminary results from application 
of the proposed on regression and D.C problems are promising.   
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1   Introduction 
Having an accurate picture of the state of a system is 
an    important part of the system operations.  While a 
simple SCADA system has the ability to provide the 
system operators with raw information about the 
system operation conditions, only a state estimator 
has the ability of filtering the information to supply a 
more accurate picture of the status of the system. 

The conventional purpose of state estimation is to 
reduce the effect of measurement errors by utilizing 
the redundancy available in the measurement system.  
In particular, the objective is to reduce the variance of 
the estimates and improve their overall accuracy.  
The other major objectives of state estimation 
methods include: detection of gross errors, detection 
of invalid topological information and detection of 
model parameter errors. 
If the inaccuracy in the measurements is modelled by 
some random probability distribution function, then 
the set of feasible estimates can also be modelled by a 
probability distribution function.  In another word, 
such estimators are probabilistic in nature.  
Regrettably, the statistics of the observation errors are 
difficult to be characterized in practice.  In addition, it 
is questionable that such imprecision in error 
modelling can not be equated with randomness [1], 
and that the main source of imprecision can be 

associated with fuzziness instead of randomness [2]. 
Fuzzy theory can very well be deployed to in such 
circumstances to overcome this limitation and 
address such uncertainty in the modelling of such 
statistics, due to its ability in handling uncertainties 
and vagueness associated with the observation errors.  
Fuzzy estimators are possibilistic in nature.  If the 
observation errors are assumed to be fuzzy due to 
uncertainty that is inherently present in the system, 
then the estimates are assumed to be a range of 
possible values.  In such situations, it is desirable to 
provide not just a single ‘optimal’ estimate of each 
state variable but also an uncertainty range within 
which we can be assured that the ‘true’ state variable 
must lie.  This is attainable by utilizing some fuzzy 
function to represent the estimates as fuzzy estimates 
with their associated uncertainty ranges as apposed to 
crisp estimates (single point only) produced by the 
conventional estimators [3].   

 
The main theme of this report is to model the 
uncertainties associated with the measured quantities 
in a way that defines an interval (range) with respect 
to their nominal values.  The range is governed by the 
tolerance, of the measuring instrument (a 
quantification of accuracy usually provided by the 
manufacturer) and other factors that are known to 
have direct effects on network mathematical model 
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being used in the estimation procedure.  By utilizing 
the proposed fuzzy linear techniques, which is known 
to address uncertainties very well, the confidence 
interval (or bounds) of the state variables can be 
computed. 

 
The present author proposes an estimator based on 
fuzzy linear regression formulation for estimating the 
uncertainty interval around the system state 
variables.  The uncertainty is expressed in both 
measurements and network parameters in a unified 
fuzzy model.  The main objective is to minimize the 
fuzziness in the estimated states.  This can be 
achieved  by minimize the sum of spreads of all fuzzy 
states, subject to double inequality constraints on 
each measurement to guarantee that the original 
membership is included in the estimated 
membership.  Linear programming has been 
employed to obtain the middle and the symmetric 
spread of every state variable.  The estimated middle 
corresponds to the value of the estimated state, 
whereas the symmetric spreads in the membership 
functions of the state variables represents the 
uncertainty interval around that estimated state.  
Thus, the primary goal is to minimize the sums of the 
uncertainties around the states. 
 
2 Uncertainty and State Estimation 

 
The uncertainty is a parameter associated with the 
measurement that describes the dispersion of the 
values that could reasonably be attributed to the 
measured quantity [4].  This uncertainty reflects the 
lack of complete knowledge of the exact value of the 
quantity being measured.  Theoretically, availability 
of complete knowledge about the measured quantity 
requires an infinite amount of information, which is 
obviously impossible.  Phenomena that contribute to 
the uncertainty are called sources of uncertainty.  
According to [4], the various possible sources of 
uncertainty in measurements, include: incomplete 
definition of the measured quantity, inadequate 
realization of the definition of the measured quantity, 
non-representative sampling (sample measured may 
not fully represent the measured quantity),  
incomplete knowledge of environmental conditions, 
human error in reading analogue instruments 
approximations incorporated in the measurement 
procedure and finite resolution of instrumentation. 

 
The idea of an uncertainty range is recognizable in 
engineering practice, where the accuracy of a 
particular measurement is often described as (for 
example) plus or minus 2 percent, rather than by 

quantifying the standard deviation or variance. 
Schweppe [5] introduced the concepts of uncertainty 
in the general context of engineering analysis, 
estimation and optimization.  In [5] the concept of 
unknown-but-bounded errors for modeling 
uncertainty in estimation problems was introduced.  
Measurements are assumed to be inexact and have 
errors that are unknown but fall within a bounded 
range.  

 
Fuzzy theory has also been widely used in power 
system state estimation.  For example, Shahidehpour 
and et al. in [18, 19] have utilized Fuzzy theory to 
handle the uncertainty in decision making and power 
purchasing in deregulated environment.  In [20, 21] 
authors have applied fuzzy set for multi-area 
generation scheduling and for optimal reactive power 
control respectively.  As for state estimation the 
concept of fuzzy-logic has been employed by 
Shabani et. al in [22] to improve the over all 
performance of the WLS estimator.  A hybrid WLS 
and fuzzy-logic estimator was developed in [22] to 
model residual based on possibility theory.  
Shahidehpour and et al.,  on the other, have employed 
fuzzy sets in conjunction with LAV (Least Absolute 
value) estimator and LMS (Least Medium Squares) 
estimator to robustly eliminate the bad data in [23].  
Further more, authors in [24] have developed a fuzzy 
LAV estimator based on maximizing the sum of 
individual memberships.  This fuzzy LAV estimator 
out performed the standard WLAV in the presence of 
leverage point. 
 
3   An overview of Tanaka's Fuzzy 
linear regression 
 
Fuzzy linear regression was introduced by Tanaka et. 
al [25] in 1982.  The general form of Tanaka's 
formulation is given by: 

0 1 1 2 2( ) .... n nY f x A A x A x A x= = + + + + = Ax   (1) 
 
where is output (dependant fuzzy variable), Y

{ }1 2, ,..... nx x x  is a non fuzzy set of crisp independent 
parameters and { }0 1, ,..., nA A A is a fuzzy set of 
symmetric members, unknowns, needs to be 
estimated.  Each fuzzy element in that set may be 
represented by a symmetrical triangular membership 
function, shown in figure 1, defined by a middle and a 
spread values, and  respectively.  The middle is 
known as the model value and the spread denotes the 
fuzziness of that model value.  The triangular 
membership function can be expressed as: 

ip ic
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Therefore, since ( , )i i iA p c= , then equation (1) may 
be rewritten as: 
 

1 ,
( )

0 ,

i i
i i i i i

A i ii
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p c a p c

a c
otherwise

μ
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Therefore, since ( , )i i iA p c= , then equation (1) may 
be rewritten as: 
 

0 0 1 1 1( ) ( , ) ( , ) .... ( , )n n nY f x p c p c x p c x= = + + +  (3) 
 

The membership function of output Y may be given 
by: 

 

{ }max(min([ ( )]) , ( , )
( )

0 ,
A ii
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Figure 1 membership function of fuzzy coefficient  A

 
Now, by substituting equation (3) in (4), the output 
membership function is given as:  
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(5) 

 
The output membership function is depicted in figure 
2. 

 
From regression point of view, equations (1-5) may 

be applied to m samples where the output can be 

either non-fuzzy, (certain or exact), in which no 
assumption of  ambiguity is associated with the 
output or fuzzy (uncertain), where uncertainty in the 
out is involved due to human judgment or meters 
impression [20].  In this study both non fuzzy and 
fuzzy output will be considered. 
 

 
Figure 2 membership function of output 
 
 
3.1 Non- fuzzy output model [19]: 
 

In this model, Tanaka converted regression model 
into a linear programming problem [19].  In this case 
the objective is to solve for the best parameters, i.e. 

*A , such that the fuzzy output set is associated with a 
membership value grater than  as in ; h
 ( ) , 1,....,Y jj y h j mμ ≥ =  (6) 

where [ ]0,1h ∈  is the degree of the fuzziness and is 
normally defined by the user.  
Therefore, with equation (6) as a condition, the main 
objective is to find the fuzzy coefficients that 
minimize the spread of all fuzzy output for all data 
set.  Note that the fuzziness in the output is due to 
fuzziness assumed in the system structure *A .   
Thus, given non-fuzzy data ( ),i iy x , the fuzzy 

parameters ( )* ,=A p c may be solve for by the linear 
programming formulation as: 

 
1 1

min( )
m n

non fuzzy i ij
j i

F c x−
= =

= ∑∑  (7) 

Subject to: 

 ( )
1 1

1
n n

j i ij i
i i

ijy p x h c x
= =

≥ − −∑ ∑  (8) 

 ( )
1 1

1
n n

j i ij i
i i

ijy p x h c x
= =

≤ + −∑ ∑  (9) 
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Note that from in (8) and (9), , defines the 

middle value and   defines the sympatric 

spread to the left, constraint (8), and to the right, 
constraint (9), as illustrated in figure 2.  As can be 
seen from the figure 2, as the degree of fuzziness, , 
increases the spread, , increases and therefore the 

uncertainty associated with the 

1

n
i ij

i
p x

=
∑

1

n
i ij

i
c x

=
∑

h
ic

ip  would increase 
[21].   
 
3.2 Fuzzy output model [22]: 
 
Due to human error and various other sources of 
imprecision in the measurements, the output may 
certainly be fuzzy.  The uncertainty in the 
measurements is represented by a fuzzy number as 

( , )j j jY y e= , where  jy  is the middle value and je  
represents the uncertainty in measurement as 
shown in figure 3. 

j

 

 ( ) 1 j
Y j

j

y y
y

e
μ

−
= −  (10) 

 
An estimation of equation 10 would be: 

 

 1
*

1

( ) 1

n

j i ij
i

nY j
i i

i

y p x

y
c x

μ =

=

−

= −
∑

∑
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The above the objective of the fuzzy linear 
regression is to determine the fuzzy parameters 

that minimize the sum of spread as in: *A

 
1 1

min( )
m n

fuzzy output i ij
j i

F c x−
= =

= ∑∑  (12) 

Subject to: 

 ( ) ( )
1 1

1 1
n n

j i ij i ij
i i

jy p x h c x h e
= =

≥ − − + −∑ ∑ (13) 

 ( ) ( )
1 1

1 1
n n

j i ij i ij
i i

jy p x h c x h e
= =

≤ + − − −∑ ∑ (14) 

 
Note that an additional term, ( )1 jh e− , emerged in 

the formulation due to the introduction of fuzziness 
(or uncertainty) in the measurements.  As mentioned, 
the equation (13) represents the jy when it lies in the 
interval to the left of the middle value with the 
uncertainty with respect to it added to that interval.  In 

the same manner, equation (14) represents the 
jy when it lies in the interval to the right of the 

middle value with the uncertainty with respect to it 
added to that interval.  The prove and detailed 
derivation for both formulation may be found in [19, 
22]. 

 
Figure 3 membership function of output 
 
4 Implementation of case studies 

 
This section presents some typical results obtained 
by applying the proposed algorithms to regression 
examples, example 14.6, page 544 and problem 
14.11, page 554 in [26], and a D.C. state estimation 
example 3.7, page 49 in [29].  
A set of MATLABTM files has been developed to 
facilitate the computation of all fuzzy parameters 
and states.  The LP problems have been solved by 
the function linprog() incorporated in the 
MATLABTM optimization toolbox [30]. 
 
4.1  Regression example 14.6 [26]: 
 

yi xij

2.1 0.52 
4.6 1.36 

 
From the above given data objective is to obtain the 
fuzzy regression parameters along with their 
spreads.  After invoking the relevant Matlab script 
file:  

------------------------- 
Fuzzy-LP 

------------------------- 
P0: 0.5524 
P1: 2.9762 
c0: 0.0000 
c1: 0.0000 

------------------------- 
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Which match the result in that same reference [26].  
Note that with zero spreads, there is a strong 
indication of what is called an exact fit.  Therefore 
the parameters are called crisp in this case. 
 
4.2  Problem 14.11, page 554 in [26]: 
 
Now with assuming that the above data set has an 
ambiguity represented by the ei in the output yi, see 
problem 14.11, page 554 in [26], as follows: 
 

(yi , ei ) xij

(2.1, 0.20) 0.52 
(4.6, 0.35) 1.36 

 
In order to solve for the regression parameters of the 
above scenario, the second formulation should be 
employed (equation 12 to 14), which can handle 
fuzziness, or uncertainty, in the output yi. 
 

------------------------- 
Fuzzy-LP 

------------------------- 
P0: 0.5524 
P1: 2.9762 
c0: 0.1071 
c1: 0.1786 

------------------------- 
 

The above solution appears to be correct when 
compared with the results shown in the previous 
example.  As can be seen that the spread for both 
parameters is no longer zero (an indication that there 
are uncertainties in the estimates and the 
measurements).   Also looking at both results, it is 
crucial to mentioned that the solution of the same 
problem shown in [31] is totally wrong and can never 
be justified.  For both runs the degree of fuzziness 
used is 0.4. 
 
4.3 D.C. state estimation example 3.7, page 49 in 

[29]: 
 

 
Figure1. Two-bus system 

 
As far as state estimation is concerned, both fuzzy 
and non-fuzzy formulation are applied on a small 
D.C. network, shown in figure 1.  It is important to 
mention that there is no need for linearization, since 
the problem is D.C., i.e. linear.  Note that the degree 

of fuzziness used is 0.5. 
------------------------- 

Fuzzy-LP 
------------------------- 

P0:   1.0300 
P1: -0.7324 
c0:   0.0400 
c1:  -0.0247 

------------------------- 
 
Note that form the above solution, it appears that 
states (PG and PL1) both have uncertainty in them 
(with out us knowing the source of uncertainty).  Or 
there could be an element of in the parameters, (i.e. 
Y-bus), of the given example.  Hence the states are 
not crisp and an uncertainty interval can be 
constructed around the states as follows:   
 

The lower bound of PG is PG 
- = 0.99 p.u.  

The upper bound of PG is PG 
+ = 1.07 p.u. 

The lower bound of PL1 is P L1 
- = -0.7571 p.u. 

The upper bound of PL1 is P L1 
+ = -0.7077 p.u.

  

Now applying the fuzzy formulation to the same 
example, but in this case information about the 
meters accuracies is available.  The standard 
deviation of all meters is obtained from the 
covariance matrix given in that same example.  The 
STD for the three meters is STD = [0.0632    0.0316 
0.0316].  The outcome is: 

 
------------------------- 

Fuzzy-LP 
------------------------- 

P0:  1.0300 
P1: -0.7324 
c0:   0.1032 
c1: -0.0563 

------------------------- 
 

As can be seen, the state remains to be the same as in 
the previous run, however, the spreads have gotten 
larger to accommodate for more uncertainty in the 
measurements.  It must be emphasized that an 
increase in the meters inaccuracy might cause the 
states not to remain constant.    

 
5     Conclusion 
 
An analysis of uncertainty in power system state 
estimation is presented in this report. The uncertainty 
is modelled and is assumed to be present in the 
system parameters and in the measurements which 
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take into account known meter accuracies.  A Fuzzy 
linear estimator was employed to estimate the both 
the states and their respective upper and lower 
bounds.  The provision of bounds by the proposed 
FLSE offers useful additional information to the 
power system operator.  Based on the preliminary 
testing and the promising results, form regression and 
D.C. examples, the proposed FLSE has proved to be 
effective tool for uncertainty analysis.   
The next phase of research is to conduct intense 
investigation and apply FLSE on A.C. power 
systems. 
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