
Interval Extensions of Partially Defined Boolean Functions

ONDŘEJ ČEPEK∗

Charles University
Dep. of Theoret. Comp. Science

Malostran. nám. 25, 118 00 Prague 1
CZECH REPUBLIC

Ondrej.Cepek@mff.cuni.cz

DAVID KRONUS
Charles University

Dep. of Theoret. Comp. Science
Malostran. nám. 25, 118 00 Prague 1

CZECH REPUBLIC
David.Kronus@mff.cuni.cz

PETR KUČERA
Charles University

Dep. of Theoret. Comp. Science
Malostran. nám. 25, 118 00 Prague 1

CZECH REPUBLIC
Petr.Kucera@mff.cuni.cz

Abstract: Interval functions constitute quite a special class of Boolean functions for which it is very easy and
fast to determine their functional value on a specified input vector. The value of an n-variable interval function
specified by interval [a, b] (where a and b are n-bit binary numbers) is true if and only if the input vector viewed
as an n-bit number belongs to the interval [a, b]. Partially defined Boolean function (pdBf) is a pair (T, F) of sets
of vectors representing truepoints and falsepoints respectively. In this paper we study the problem of finding an
interval extension of given pdBf, that is a Boolean function f which respects truepoints and falsepoints of the input
pdBf and can be represented by an interval. We present a polynomial-time algorithm which solves this problem.

Key–Words: partially defined Boolean function, interval function

1 Introduction
The class of interval functions was introduced in [6],
where the following problem was presented: Given
two n-bit numbers a, b, find a minimum (shortest)
DNF representing a Boolean function f on n vari-
ables, which is true exactly on numbers from the in-
terval [a, b]. This problem originated from the field
of automatic generation of test patterns for hardware
verification, see e.g. [5, 4]. In [6] the authors also
studied the problem in which they are looking for a
shortest DNF F representing f (given by an interval
[a,b]) such that for any vector x, for which f(x) = 1
there is exactly one term t in F for which t(x) = 1.
In other words, there is an additional requirement that
the sets on which the terms of F are satisfied must be
pairwise disjoint.

The representation of an interval Boolean func-
tion using only the two n-bit numbers a, b can be
rather useful (and in particular it is very short). In [7]
we studied the reverse problem which also appears to
be interesting and practically important: Given a DNF
F , can we recognize whether it represents an interval
function? This problem is co-NP hard in general, as
we have shown in [7], but can be solved in linear time
with some additional requirements on the input DNF
(the Boolean function represented by the input DNF
belongs to some class of Boolean functions for which
we are able to solve the satisfiability problem in poly-
nomial time). The most trivial example is the class of

∗also teaching at the Institute of Finance and Administration
(VŠFS), Estonská 500, Prague 10, Czech republic

monotone functions.
Another widely studied and practically important

problem is finding an extension of a pdBf in a spec-
ified class. This problem can be defined as follows:
Given partially defined Boolean function (T, F) find
a function from a specified class which is true on
all vectors from T and false on all vectors from F ,
or prove that such a function does not exist. In [1]
this problem was studied for a variety of classes of
Boolean functions. For some of the classes the prob-
lem is solvable in polynomial time, for others it is NP-
hard. In this paper we show, that given a partially de-
fined Boolean function, we can find its interval exten-
sion, if it exists, in polynomial time.

1.1 Outline

The paper is structured as follows. In Section 2 we
introduce the necessary notation and give basic defi-
nitions. The notions of an interval function and a par-
tially defined Boolean function is also made precise
here. In Section 3 we show, that it is possible to find
a positive interval extension of a pdBf, if it exists, and
we also generalize this result to general interval func-
tions later in Section 4. We close our paper with few
concluding remarks in Section 5.

2 Notation and definitions

A Boolean function, or a function in short, is a
mapping f : {0, 1}n 7→ {0, 1}, where x ∈

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 457

{0, 1}n is called a Boolean vector (a vector in short).
Propositional variables x1, . . . , xn and their negations
x1, . . . , xn are called literals (positive and negative
literals respectively). An elementary conjunction of
literals

t =
∧
i∈I

xi ∧
∧
j∈J

xj (1)

is called a term, if every propositional variable appears
in it at most once, i.e. if I ∩ J = ∅. A disjunctive
normal form (or DNF) is a disjunction of terms. It is
a well known fact (see e.g. [3].), that every Boolean
function can be represented by a DNF. For a DNF F
and a term t we denote by t ∈ F the fact, that t is
contained in F .

The DNF version of the satisfiability problem
(sometimes called the falsifiability problem) is defined
as follows: given a DNFF , does there exist an assign-
ment of truth values to the variables which makes F
evaluate to 0?

Given Boolean functions f and g on the same set
of variables, we denote by f ≤ g the fact that g is sat-
isfied for any assignment of values to the variables for
which f is satisfied. We call a term t an implicant of
a DNF F , if t ≤ F . We call t a prime implicant, if t
is an implicant of F and there is no implicant t′ 6= t
of F , for which t ≤ t′ ≤ F . We call DNF F prime, if
it consists only of prime implicants. We call DNF F
irredundant if for any term t ∈ F , DNF F ′ produced
fromF by deleting t does not represent the same func-
tion as F .

A term is called positive if it consists only of pos-
itive literals, it is called negative if it consists only of
negative literals. A DNFF is called positive (negative
resp.) if it consists only of positive (negative resp.)
terms. A function f is called positive (negative resp.)
if it admits a positive (negative resp.) representation.
The class of positive functions will be denoted by C+,
the class of negative functions will be denoted by C−.

We will denote binary vectors by ~x, ~y, The
bits of vector ~x ∈ {0, 1}n will be denoted by
x1, . . . , xn. The vector ~x also corresponds to an in-
teger number x with binary representation equal to ~x.
In this case x1 is the most significant bit of x and xn

the least significant bit. Hence x =
∑n

i=1 xi2n−i.

Definition 1. For vector ~x ∈ {0, 1}n and for permu-
tation π : {1, . . . , n} → {1, . . . , n} we denote by ~xπ

the vector of n-bits formed by permuting bits of ~x by
π. That means xπ

i = xπ(i). By xπ we denote the num-
ber with binary representation ~xπ.

Definition 2. Boolean function f : {0, 1}n → {0, 1}
is called an interval function if there exist two n-bit in-
tegers a, b and permutation π of {1, . . . , n} such that
for every n-bit vector ~x ∈ {0, 1}n we get f(~x) = 1 if

and only if xπ ∈ [a, b]. The class of interval functions
will be denoted by Cint. The class of positive (negative
resp.) interval functions will be denoted by C+

int (C−
int

resp.).

In this paper we shall need the fact that interval
functions are closed under partial assignment.

Lemma 3. The class of (positive) interval functions is
closed under partial assignment.

Proof :Let f be an interval function with respect to the
order of variables x1, . . . , xn, representing the inter-
val [a, b]. Let f ′ = f [xi := v], where 1 ≤ i ≤ n and
v ∈ {0, 1} are taken arbitrarily. Let us assume by a
contradiction that f ′ is not interval with respect to the
order of variables x1, . . . , xi−1, xi+1, . . . , xn. Then
there are three (n − 1)-bit numbers u′1 < u′2 < u′3,
such that f ′[u′1] = f ′[u′3] = 1 while f ′[u′2] = 0.
But that would mean that there would also be n-bit
numbers u1 < u2 < u3 originating from u′1, u

′
2, u

′
3

by inserting the bit of value v at the i-th position, for
which f [u1] = f [u3] = 1 while f [u2] = 0, which is
a contradiction to the fact that f is an interval func-
tion. Since the class of positive functions is closed
under partial assignment, the class of positive interval
functions is closed under partial assignment as well.
ut

Definition 4. Let T and F be two sets of n-bit
Boolean vectors such that T ∩ F = ∅. Then we call
the pair (T, F) a partially defined Boolean function
(pdBf). A Boolean function f defined on n variables
extends a pdBf (T, F) if it is true on all vectors from
T and false on all vectors from F .

3 Positive Interval Extensions of
pdBfs

Given a class C of Boolean functions, an extension
problem for C can be stated as follows: given an arbi-
trary pdBf (T, F), does there exist a function f ∈ C
such that f extends (T, F)? The following algorithm
solves the extension problem for the class of positive
interval functions.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 458

Algorithm 5. EXTENSION(C+
int)

Input: A pdBf (T, F)
Output: Order xπ(1), . . . , xπ(n) of variables, and

n-bit number a, if there is a positive in-
terval function which extends (T, F) and
represents an interval [a, 2n) with re-
spect to the order xπ(1), . . . , xπ(n). NO
otherwise.

1: I := {1, . . . , n}
2: for i := 1 to n
3: do
4: if (∃j ∈ I) (∀u ∈ T) (uj = 1)
5: then
6: π(i) := j
7: ai := 1
8: F := F \ {v ∈ F | vj = 0}
9: I := I \ {j}

10: else if (∃j ∈ I) (∀v ∈ F) (vj = 0)
11: then
12: π(i) := j
13: ai := 0
14: T := T \ {u ∈ T | uj = 1}
15: I := I \ {j}
16: else
17: return NO
18: endif
19: done

Algorithm 5 is based on similar ideas as Algo-
rithm 4.2 in [7]. The index set I contains at each
time indices, which have not been considered yet and
we restrict our attention only to these indices. Al-
gorithm 5 looks at every step for an index j, which
would satisfy conditions in steps 4 or 10. If the condi-
tion in step 4 is satisfied, it means that each truepoint
has the j-th bit equal to 1. In this case we assume,
that a positive interval extension f which is being con-
structed satisfies that if f(x) = 1 for some vector x,
then xj = 1, and hence conversely if xj = 0 then
f(x) = 0. Due to this assumption we can discard all
the falsepoints v for which vj = 0, which we do in
step 8. The similar situation is, when each falsepoint
v has vj = 0, in this case we assume, that the ex-
tension has the similar property, in particular, that if
f(x) = 0 for some vector x, then xj = 0, and hence
if xj = 1, then f(x) = 1. Due to this assumption we
can discard all the truepoints u for which uj = 1 (step
14), since these are not interesting any more.

The proof of the correctness of Algorithm 5 rests
on lemmas 6, 7, and 8. The first one shows that the ac-
tions which follow a successful test in step 4 are cor-
rect, the second one shows that the actions which fol-
low a successful test in step 10 are correct, and finally

the third one proves that if neither of the two tests suc-
ceeds then there exists no positive interval extension
of the given input.

Lemma 6. Let (T, F) be a pdBf and let us assume
that u1 = 1 holds for all u ∈ T . Let T ′ consist of all
vectors from T with the first bit omitted, let F ′ con-
sist of all vectors v from F with v1 = 1 and with the
first bit omitted. Then (T, F) has a positive interval
extension if and only if (T ′, F ′) has a positive interval
extension. Moreover if (T ′, F ′) has a positive interval
extension f ′ with respect to some order of variables
x2, . . . , xn, then function f(x) = x1 ∧ f ′(x′) (where
x′ is the vector x with the first bit omitted) is a positive
interval extension of (T, F) with respect to the order
of variables x1, x2, . . . , xn.

Proof :(only if part) Let us at first assume, that (T, F)
has a positive interval extension f , the function f ′ =
f [x1 := 1] clearly extends (T ′, F ′), moreover f ′ is an
interval function according to Lemma 3.

(if part) Now, let us suppose, that (T ′, F ′) has an
extension f ′ which is a positive interval function with
respect to some order x2, . . . , xn. We shall show, that
f(x) = x1 ∧ f ′(x′) is a positive interval extension
of (T, F). To see, that f is a positive interval func-
tion it suffices to take a positive interval DNF F ′ rep-
resenting f ′, now DNF F = x1 ∧ F ′(x′) is a DNF
representing f , such that x1 is a variable which ap-
pears in every term of F ′. F is a positive interval
DNF because Algorithm 4.2 in [7] for positive inter-
val function recognition would recognize it so, as can
be easily observed. Hence it remains to show, that f is
an extension of (T, F), which is quite clear. Given a
vector u ∈ F , either u1 = 0, in which case f(u) = 0,
or u1 = 1, in which case u′ ∈ F ′, f(u) = f ′(u′),
and f ′(u′) extends (T ′, F ′), hence also in this case
f(u) = 0. Given v ∈ T , surely v1 = 1 holds, and
thus f(v) = f ′(v′). Since f ′ extends (T ′, F ′) and
v′ ∈ T ′, we have f(v) = f ′(v′) = 1, which com-
pletes the proof. ut

Lemma 7. Let (T, F) be a pdBf and let us assume
that v1 = 0 holds for all v ∈ F . Let F ′ consist of all
vectors from F with the first bit omitted, let T ′ con-
sist of all vectors u from T with u1 = 0 and with the
first bit omitted. Then (T, F) has a positive interval
extension if and only if (T ′, F ′) has a positive interval
extension. Moreover if (T ′, F ′) has a positive interval
extension f ′ with respect to some order of variables
x2, . . . , xn, then function f(x) = x1 ∨ f ′(x′) (where
x′ is the vector x with the first bit omitted) is a positive
interval extension of (T, F) with respect to the order
of variables x1, x2, . . . , xn.

Proof :Since the statement and also its proof are ”mir-
ror images” of Lemma 6 and of its proof, we leave the

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 459

details to the reader. ut

Lemma 8. Let (T, F) be a pdBf and let us assume
that there exists no index j such that uj = 1 holds for
all u ∈ T or vj = 0 holds for all v ∈ F . Then there
exists no positive interval extension of (T, F).

Proof :The assumption of the lemma implies that no
matter which bit j is selected to be the most signif-
icant one, there exist two vectors (numbers) x and y
starting with value zero in bit j (i.e. xj = yj = 0)
such that x ∈ T and y ∈ F , and similarly there exist
two vectors (numbers) u and v starting with value one
in bit j (i.e. uj = vj = 1) such that u ∈ T and v ∈ F .
However, these four vectors prevent the function from
being a positive interval function with respect to any
order of variables in which bit j is the most significant
one. ut

Theorem 9. Algorithm 5 works correctly and can be
implemented so that it requires O(n · (n+ |T |+ |F |))
time.

Proof :The correctness of the algorithm follows us-
ing a simple induction on i. Lemma 6, Lemma 7, and
Lemma 8 show, that each step is correct. Note, that
each time the algorithm chooses an index j as the next
element in the order, variable xj plays the role of x1 in
lemmas 6 and 7. Set I contains all the time those in-
dices, which we still take into account, the remaining
ones are omitted.

The time requirements depend on the implemen-
tation, we shall describe, how to achieve running time
O(n · (n + |T | + |F |)). At the begining of the algo-
rithm we shall construct the following data structures,
which are similar to the ones used in the linear time
implementation of Algorithm 4.2 in [7].

• Array A of length n, each element A[i] will con-
tain a pointer to a double-linked list of structures
representing true points u ∈ T for which ui = 1.
The head of this list will contain the number of
its elements. Each element of the list will contain
a pointer to the head.

• Array B of length n, each element B[i] will con-
tain a pointer to a double-linked list of structures
representing false points v ∈ F for which vi = 0.
the head of this list will contain the number of its
elements. Each element of the list will contain a
pointer to the head.

• Each vector u ∈ T ∪ F will be represented by a
structure Su. This structure will contain an array
Pu of length n. If u ∈ T and ui = 1, then Pu[i]
points to the element of the list representing u in
A[i]. If u ∈ F and ui = 0, then Pu[i] points to

the element of the list representing u in B[i]. In
another case Pu[i] contains a nil value. Moreover
each element of list in A[i], B[i] representing a
vector u will point to the structure Su.

It should be clear that these data structures can be
set up in O(n · (|T | + |F |)) time. Using these data
structures, we can test the condition in step 4 in O(n)
time, since we simply look at each element in array
A and ask whether the number of elements of the ap-
propriate list is |I|. Similarly, the condition in step 10
can be tested in O(n) time. Both tests are performed
at most n times and hence they together require O(n2)
time.

In step 8 we look at B[j] and delete all structures
for vectors which are present in the list in B[j], each
structure is deleted from all lists in which it is present.
This can be done using the pointer to the Sv struc-
ture. A similar observation can be made about step 14.
Total time requirements of all deletes from our data
structures can be at most as high as the total number
of elements in all lists, which is O(n · (|T | + |F |)),
this time is independent on the for cycle.

The remaining steps take constant time, since
they are repeated n times, they together take O(n)
time. ut

4 Interval Extensions of pdBfs

The following algorithm solves the extension prob-
lem for the class of interval functions. For a set S
of n-bit vectors, index j = 1, . . . , n, and the set of
indices I ⊆ {1, . . . , n} let us denote by S|j=e =
{u ∈ S | uj = e}, where e ∈ {0, 1}, and by
SI = {u restricted to bits from I | u ∈ S}.

Algorithm 10. EXTENSION(Cint)

Input: A pdBf (T, F)
Output: Order xπ(1), . . . , xπ(n) of variables, and

n-bit numbers a, b, if there is an inter-
val function which extends (T, F) and
represents an interval [a, b] with respect
to the order xπ(1), . . . , xπ(n). NO other-
wise.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 460

1: i := 1
2: I := {1, . . . , n}
3: while (∃j ∈ I) [(∀u ∈ T) (uj = 1)∨(∀u ∈

T) (uj = 0)]
4: do
5: if (∀u ∈ T) (uj = 1)
6: then
7: ai := 1
8: bi := 1
9: F := F \ {v ∈ F | vj = 0}

10: else
11: ai := 0
12: bi := 0
13: F := F \ {v ∈ F | vj = 1}
14: endif
15: π(i) := j
16: I := I \ {j}
17: i := i + 1
18: done
19: for j ∈ I
20: do
21: T0 := (T |j=0)I\{j}

22: F0 := (F |j=0)I\{j}

23: T1 := (T |j=1)I\{j}

24: F1 := (F |j=1)I\{j}

25: if (T0, F0) has a positive interval exten-
sion f0 representing interval [a′, 2n−i)
and (T1, F1) has a negative interval ex-
tension f1 representing interval [0, b′]
and both extensions are interval with re-
spect to the same order xi+1, . . . , xn.

26: then
27: π(i) := j
28: ai := 0
29: bi := 1
30: a := a1 . . . aia

′

31: b := b1 . . . bib
′

32: return order xπ(1), . . . , xπ(n) and the
numbers a, b.

33: endif
34: done
35: return NO

Now we will prove the correctness of Algo-
rithm 10 again by using series of lemmas.

Lemma 11. Let (T, F) be a pdBf on n variables and
let us assume that u1 = 1 (u1 = 0 resp.) holds
for all u ∈ T . Let T ′ consist of all vectors from
T with the first bit omitted, let F ′ consist of all vec-
tors v from F with v1 = 1 (v1 = 0 resp.) and
with the first bit omitted. Then (T, F) has an in-
terval extension if and only if (T ′, F ′) has an inter-
val extension. Moreover if (T ′, F ′) has an interval
extension f ′ with respect to some order of variables

x2, . . . , xn, then function f(x) = x1∧f ′(x2, . . . , xn)
(f(x) = x1 ∧ f ′(x2, . . . , xn) resp.) is a interval ex-
tension of (T, F) with respect to the order of variables
x1, x2, . . . , xn.

Proof :We shall only show the case when all vectors u
in T have the first bit equal to 1, the latter case is anal-
ogous. The proof of this lemma is just a modification
of the proof of Lemma 6

(only if part) Let us at first assume, that (T, F)
has an interval extension f , the function f ′ = f [x1 :=
1] clearly extends (T ′, F ′), moreover f ′ is an interval
function according to Lemma 3.

(if part) Now, let us suppose, that (T ′, F ′) has
an extension f ′ which is an interval function with re-
spect to some order x2, . . . , xn. We shall show, that
f(x) = x1 ∧ f ′(x′) is an interval extension of (T, F).
Let us consider a prime and irredundant interval DNF
F ′ representing f ′. Then DNF F = x1 ∧ F ′(x′) is a
prime and irredundant DNF representing f , and more-
over it is an interval DNF, since (as can be easily ob-
served), Algorithm 5.3 in [7] would recognize it so.
Hence f is an interval function. Similarly as in the
proof of Lemma 6 it can be observed that f extends
(T, F), as well. ut

Lemma 12. Let (T, F) be a pdBf on n variables and
let us assume, that for any index i = 1, . . . , n there
are some vectors u, v ∈ T such that ui = 1 and vi =
0. Let T0, F0, T1, F1 be defined as in steps 21-24 of
Algorithm 10. Then (T, F) has an interval extension
if and only if there exists an index j (w.l.o.g. let j = 1
after renumbering) such that the following conditions
hold:

1. (T0, F0) has a positive interval extension f0, and

2. (T1, F1) has a negative interval extension f1, and

3. f0 and f1 are both interval with respect to the
same order of variables x2, . . . , xn.

Moreover, if f0 is a positive interval extension of
(T0, F0) and f1 is a negative interval extension of
(T1, F1), then f(x) = [x1 ∧ f1(x2, . . . , xn)] ∨ [x1 ∧
f0(x2, . . . , xn)] is an interval extension of (T, F) with
respect to order x1, x2, . . . , xn.

Proof :(only if part) Let us at first assume that (T, F)
has an interval extension f with respect to some order
x1, . . . , xn. Set j = 1, f0 = f [x1 := 0], and f1 =
f [x1 := 1]. By Lemma 3 both f0 and f1 are interval
functions. It should be clear, that both of them are
interval with respect to order x2, . . . , xn. Moreover, it
is obvious that f(x) = [x1 ∧ f1(x2, . . . , xn)] ∨ [x1 ∧
f0(x2, . . . , xn)].

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 461

(if part) Now, let us assume, that there is some
j, for which the conditions 1-3 apply. We shall
show, that f(x) = [x1 ∧ f1(x2, . . . , xn)] ∨ [x1 ∧
f0(x2, . . . , xn)] is an interval extension of (T, F).
Again to see, that f is an interval function, we shall
recall Algorithm 5.3 from [7]. Given prime and ir-
redundant DNFs F0 representing f0 and F1 repre-
senting f1, F = (x1 ∧ F1) ∨ (x1 ∧ F0) would be
recognized by Algorithm 5.3 from [7] as an interval
DNF. Since Algorithm 5.3 from [7] correctly recog-
nizes interval functions, f is an interval function. It
remains to show, that f extends (T, F), which is quite
easy. Given u ∈ T , either u1 = 1, in which case
u restricted to bits 2, . . . , n belongs to T1 and hence
f1(u2, . . . , un) = 1 and also f(u) = 1. If u1 = 0,
similarly f0(u2, . . . , un) = 1 and f(u) is again 1. The
case when u ∈ F is similar and so we leave the details
to the reader. ut

Theorem 13. Algorithm 10 is correct and works in
time O(n · (n + |T |+ |F |)).

Proof :The correctnes of Algorithm 10 is a corollary
of Lemma 11, Lemma 12, and simple induction on i.

Time requirements are straightforward, the while
cycle in (steps 3 – 18) repeats at most n times, all the
steps can be performed in O(n · (n+ |T |+ |F |)) time.
The same holds for the for cycle in (steps 19 – 34),
where we use Theorem 9 to show, that condition in
the if statement (step 25) can be tested in O(n · (n +
|T |+ |F |)) time. ut

5 Conclusions

In Section 4 we have shown, that given a pdBf (T, F),
we can find an (positive) interval extension of (T, F)
in polynomial time, if it exists.

However many problems concerning interval
functions and pdBfs still remain open. The following
list contains some of them:

1. BEST-FIT interval extensions of pdBfs.
This problem is a generalization of the interval
extension problem of pdBf we studied in Sec-
tion 4. We are looking for interval function f
which for given pdBf (T, F) minimizes the num-
ber of vectors that are not correctly classified,
that means that we want to minimize |(T (f) ∩
F) ∪ (F (f) ∩ T)|.

2. Interval extensions of pBmds.
This is another generalization of interval exten-
sion problem of pdBf. Here we want to decide
whether a given pBmd (partially defined Boolean
function with missing data) has interval exten-
sion. In pBmd (T, F) some vectors in T ∪F can

have in some positions ’*’ instead of 0 or 1, and
this means that the value of this bit is not deter-
mined. There are several variants of this prob-
lem, see [2] for more information.

Acknowledgements: The work on this research
was supported by the Czech Science Foundation
(GACR), grants No. 201/04/1102 (first author) and
No. 201/05/H014 (second author).

References:

[1] E.BOROS, T.IBARAKI AND K.MAKINO Error-
free and best-fit extensions of partially defined
boolean functions. Information and Computation
140, 1998, 254 – 283.

[2] E.BOROS, T.IBARAKI AND K.MAKINO Ex-
tensions of partially defined boolean functions
with missing data. Tech. Rep. 6-96, RUTCOR
Research Report RRR, Rutgers University, New
Brunswick, NJ, 1996.

[3] M.GENESERETH AND N.NILSSON Logical
Foundations of Artificial Intelligence. Morgan
Kaufmann, Los Altos, CA, 1987.

[4] C.-Y.HUANG AND K.-T.CHENG Solving con-
straint satisfiability problem for automatic gener-
ation of design verification vectors. Proceedings
of the IEEE International High Level Design Val-
idation and Test Workshop, 1999.

[5] D.LEWIN, L.FOURNIER, M.LEVINGER,
E.ROYTMAN, AND G.SHUREK Constraint
satisfaction for test program generation, 1995.

[6] B.SCHIEBER, D.GEIST AND Z.AYAL Comput-
ing the minimum dnf representation of boolean
functions defined by intervals. Discrete Applied
Mathematics 149, 2005, 154 – 173.

[7] O.ČEPEK, D.KRONUS AND P.KUČERA Renam-
able interval boolean functions. Proceedings of
Czech-Japan Seminar 2006, Kitakyushu, Japan,
2006, 232 – 241.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 462

