
Framework for Service-Oriented Architecture Metadata Management

JARALLAH ALGHAMDI, MALIK UMAR
Information & Computer Science Department

King Fahad University of Petroleum & Minerals
Dhahran, SAUDI ARABIA

Abstract: - Enterprise Architects and developers constantly have to deal with changing and evolving business
requirements. Organizations have to be more dynamic in their collaboration and competition efforts to remain
viable. To combat these increasing pressures on the IT resources enterprises are moving towards the paradigm
of service orientation. This allows for businesses to leverage their existing investment in IT to accommodate
new requirements. But this service orientation comes at the cost of increased complexity of the enterprise
systems architecture. This paper explores the possibility of using semantic web technologies of XML, RDF
and DAML + OIL and proposes a framework to curtail the increasing complexity of Service–Oriented
Architectures.

Key-Words: - Service-Oriented Architecture, Metadata management, RDF, DAML + OIL

1 Introduction
In today’s ever increasingly fast paced business
environment organizations have to adapt quickly to
market and global socio-political changes.
Organizations that can perform this task survive to
face the next set of challenges and those that cannot,
go out of business. A key factor that has emerged
over the years is technological improvements to the
way business is done. This can greatly enhance the
profitability or hinder it depending on the way
technology is used. Information Technology
infrastructure of any business must be agile and
adaptive to the way business is being performed
now and in future. The current approach of
developing enterprise applications lacks this agility
and cannot be easily and quickly aggregated to solve
a new set of problems.

Service Oriented Architecture (SOA) attempts
to solve some of these inter-business and intra-
business development and integration problems.
Service Oriented Architecture is a new paradigm in
distributed systems aiming at building loosely-
coupled systems that are extendible, flexible and fit
well with existing legacy systems [1]. Organizations
can build flexible architectures utilizing SOA.

The flexibility offered by SOA comes at the
price of complexity of overall Enterprise Software
Architecture [2]. A complex picture emerges due to
the layered nature of the enterprise architecture and
the dependency of one layer of services on another.
Although this type of architecture is excellent for
flexibility but it is difficult to maintain as services
become dependent on one another and get
intertwined. Configuration Management Databases

[2] alleviate some of the complexity but still do not
provide a dynamic overall view of the service usage
and dependencies to architects. What is needed is a
metadata management framework for web services
that would allow storage of service dependencies
and other pertinent information in an easily
accessible repository. This would give enterprise
architects a mechanism to manage overall
complexity and reduce problems involved in any
type of service maintenance.

2 Service Oriented Architecture: An

Overview
To meet the ever changing requirements of the
business world, software industry has developed a
number of solutions to reduce the time to market.
The latest trend in the information technology
industry, as a part of this continuing effort, is to
move to service orientation (SO) paradigm which is
based solely on industry accepted open computing
standards. The service orchestration paradigm
advocates “services” being available as discoverable
resources on the network.

A service is defined as “A contractually defined
behavior that can be implemented and provided by a
component for use by another component” [11].
Services abstract their internal complexity and
working details from the services’ consumer and
provide their functionality through a contract façade.
Web Services is an industry accepted standard for
implementing distributed components as services.
Web Services employ open interoperability standard
of XML [12] and SOAP [15] to exchange data. The

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 385

Web Service contract information is defined via the
Web Service Description Language (WSDL) [13]
and Web Services are discoverable for use on the
network by registering with repository for Universal
Description and Discovery Integration (UDDI) [4-6,
14]. Fig.1 gives an example of how a Web Services
Architecture works; depicting the registry-lookup
and invocation processes. Web Services are the
premiere technology in enabling the service-
orientation of IT. The advent of web services has
enabled a true implementation of Service–Oriented
Architecture. The combination of these open
standard technology allows Web Services to
interconnect disparate systems in an object neutral
way.

Service
Consumer

Service

Service
Directory

Register

Looks Up

Invokes

Fig.1 Web Services Architecture

There are many different definitions of SOA
[16, 17]. Syed Hashimi explains in [4] that SOA
software applications are built on basic components
called services, processes etc., defined in terms of
what the component does, typically carrying out a
business-level operation. A service in SOA is an
exposed piece of functionality with three properties.

1. The interface contract to the service is
platform-independent.

2. The service can be dynamically located and
invoked.

3. The service is self-contained. That is, the
service maintains its own state.

Service-Oriented Architecture is not a new
concept. There have been previous attempts at
attaining services orientation such as the Common
Object Request Broker Architecture (CORBA) [9]
and the Distributed Component Object Model
(DCOM) [10]. The main difference between the
previous implementation and the current one is that
open standards allow for true interoperability. For
example; using a Web Services based SOA, a .NET
application can invoke an IBM CICS or IBM IMS

transaction on a mainframe or a J2EE application
running on UNIX can invoke a BizTalk service
running on Windows platform. Fig.2 shows how the
Service-Oriented Architecture uses the Web
Services.

Fig.2 SOA using Web Services

3 Problem Description
With the advent of web services as a viable platform
independent technology [5], realization of a service-
oriented architecture embodying the properties of
platform independence, dynamic invocation, and
self-containment has become possible. Services
available for attaining various types of functionality
can be discovered by means of Universal
Description, Discovery and Integration (UDDI)
registries [4-6] and applications can quickly be built
by utilizing pre-built services. New services can
even be dynamically composed [7] based on user
request. UDDI provides a simple mechanism for
service consumer to look-up services from the
registry, based on key word or category. This level
of abstraction between the service consumer and
provider allows for flexibility, but at the same time
increases application architectural complexity.
Because of this middle level of indirection there is
no mechanism available to identify all the
consumers of a service. This might not impact
applications that are acting as information
aggregators but would have significant impact if the
application relies on coarse-grained business
services, which in turn are dependent on other

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 386

Fig.3 Enterprise Architecture Complexities

services. This dependency information becomes
especially critical while architecting new solutions
or maintaining existing services infrastructure. This
is especially true in large enterprise architectures
which are composed of a heterogeneous collection
of systems interacting to provide business
functionality.

Fig.3 shows the complexity of an enterprise
landscape overlaid with the software relationships.
Organizations continue to move to a distributed and
loosely coupled architecture where an application no
longer runs on a single machine but is distributed
over the enterprise landscape. New generation of
business software solutions are a collection of
customized smaller software components, as a result
the organizational IT infrastructure is growing in
terms of scale, scope and complexity. This
complexity is further compounded when change is
introduced into the enterprise architecture due to
changing business requirements, acquisitions and
mergers.

Complexity cannot be eliminated in a dynamic
and evolving environment so the focus has to be
diverted to managing this change and complexity in
order to balance the need of business for dynamism
and the Enterprise Architect’s need for stability.
Mechanisms have to be developed to retain
information about the service-oriented architecture,
the relationship among services, their reliability,
changeability and dependencies. These and other
pieces (service configuration) of SOA metadata
would give the architects the following benefits.

 High-level service oriented view of the
enterprise software systems.

 Identification of interdependencies within
services to discover critical services.

 Assess risk and impact of change in the
service ecosystem.

 Centralized repository for all scattered
service related information.

 Support in managing daily operations and
planning upgrades.

4 Related Works
There are a number of areas in which work is being
done related to SOA metadata management. Some
of the more pertinent items to this research work are
discussed in the following lines.

Universal Description and Discovery
Integration Registries provide the means for
business and web service to register, for discovery
and utilization by consumers. Most of the work
being performed is to extend UDDIs to provide
additional information about services other than
service location and description [6, 18].

WSDL is used to describe the web service’s
interface and WSOL [19] is an XML notation
compatible with WSDL standard. It has been used to
provide formal specification of classes of service,
service constraint and management statement for
Web Services. WSOL enables selection of more
appropriate Web Service and service offering for
particular circumstances.

To overcome the deficiencies of XML [12] and
RDF [20] schema, DARPA Agent Markup
Language (DAML) [21] was developed by Defense
Advanced Research Projects Agency. It can be used

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 387

to describe the semantics behinds a web service in
terms of properties, constraints and relationships
using the DAML+OIL [22] ontology. These markup
languages overcome some of the limitations of
WSDL in describing web service metadata.

Universal Description & Directory Integration
registries provide an excellent and widely adopted
mechanism for service providers to advertise their
services in a standard form and, for service
consumers to query services of interest. A UDDI
entry consists of white pages; contact information,
yellow pages; industrial classification and green
pages; reference to specification of services.
Although some of the service metadata can be stored
in UDDI registries that would be helpful for
consumers to select the appropriate service, yet not
all information can be persisted in this manner for
the following reasons.

 Requires modification of the UDDI data
model.

 Requires extensions of UDDI publication
interface.

 Forces service provider to ensure all UDDI
registries are updated with the latest service
metadata.

Therefore the metadata for a Web Services based
SOA should be retained outside the UDDI registries
in an independent source optimized for this purpose.

The above mentioned technologies taken in
isolation do not provide complete solution to the
metadata management problems for Web Services
based SOA. Used in conjunction with ontology to
describe this information and web based information
dissemination techniques, they can provide a
framework to address some of the complexity
problems faced by Enterprise Architects.

5 SOA Metadata Management

Framework
As we have previously mentioned apart from the
basic information a service may have non-functional
characteristics, such as service relations,
dependencies and quality of service. Not having all
the pertinent information about services available in
a readily accessible manner creates complexity in a
dynamic SOA. To overcome this complexity, as a
first step we have identified a basic set of service
attributes that are relevant for Enterprise Architects
to manage and maintain the enterprise SOA. Table 1
lists a preliminary sample of service metadata &
configuration information for SOA. These show
some of the important aspects that architects are
interested in regarding services participating in a
SOA.

Name Description Comments/Examples
Service Description
Service Name Name of the business service customerAddressService
Service
Description

Detailed description of the functionality
provided by the service

Service Owner The business proponent for the service Customer Relations Department
Service
Developer

In house or external entity responsible for
developing and maintaining the web service

ACM Service Corp.
CRM development Team etc

Service Category Business service category CRM – Customer Information
Service Scope The scope of the business service,

department, business line or enterprise wide
Enterprise Service

Service Type Basic Service (informational)
Compound Service (transactional)

Basic Service

Service Implementation Details
Service Contract Location of the service WSDL [13] file http://acme.com/ws/customer?WSDL
Binding Protocol Protocol required to access the service HTTP
Security Protocol Security protocol used to secure the service HTTPS/SSL – 3
Service
Controller

Controlling authority that grants access to
the service

Customer Relations Dept. or
CRM development Team

Service Use Case Business requirement/use fulfilled by the
service

http://acme.com/ws/customer?use_case

Class Diagram Class diagram showing methods and
attributes of the service

http://acme.com/ws/customer?use_case

Service
Dependencies

Other Service on which this service is
dependent for its functionality

http://acme.com/ws/authentication
http://acme.com/ws/authorization

Table 1: Service metadata & configuration information for SOA

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 388

http://acme.com/ws/customer?WSDL
http://acme.com/ws/customer?use_case
http://acme.com/ws/customer?use_case
http://acme.com/ws/authentication
http://acme.com/ws/authorization

5.1 Metadata and Configuration
Representational Schema

To represent the non functional characteristics of
web services this paper describes a RDF and
DAML+OIL based ontology that can be adopted for
this purpose. The advantage of using RDF and
DAML+OIL based ontology is that the resulting
metadata document is in XML format that is both
human and machine readable.

The RDF schema allows class definitions by
declaration, for example we can define enterprise
service as a class of web service which can have a
unique set of characteristics, representative of this
type of services. Fig.4 shows a top level RDF tag
used for making a web service. Dependency
information of a service can also be provided in a
declarative format using RDF tags as shown in the
Fig.5. This technique allows for complete hierarchy
of services and their dependencies to be
demonstrated, showing not only dependencies, but
also weak links.

Fig.4 A Root RDF Tag

Using a combination of DAML+OIL and RDF
we can define the properties of the web service class.

Fig.5 Dependency Information using RDF Tags

5.2 Web Service Metadata Ontology
Fig.6 describes all the referenced standards used for
defining this ontology and lays the ground work
with service dependencies as a sample of the
framework for meta-data. Additional DAML data

types can be added to this ontology similar to
attributes suggested in Table. 1.

<?xml verion 1.0 encoding “UTF-8” ?>
<rdf:RDF

xmlns:rdf =
“http://www.w3c.org/1999/02/22-rdf-
syntax-ns#”

xmlns:rdf =
“http://www.w3c.org/2000/01/rdf-
schema#”

xmlns:rdf =
“http://www.w3c.org/2001/10/daml+oil#
”

xmlns:rdf =
“http://www.acme.com/ws/metadata”>
<daml:Ontology rdf:about = “”>

<daml:versionInfo> 1.0
</daml:versionInfo>

<rdfs:comment> An ontology for web
service metadata </rdfs:comment>

<daml:imports rdf:resource =
“http://www.w3c.org/2001/10/dam

l+oil”/>
</daml:Ontology>
<rdfs:Class rdf:ID = ”WebService” >
 <rdfs:lable> Web Service
</rdf:lable>
<rdfs:comment>Web Service part of
organizational SOA </rdfs:comment>
</rdfs:Class>
<daml:DatatypeProperty rdf:ID =
“serviceDependecy”>
 <rdfs:lable> Service Dependency
</rdf:lable>
<rdfs:comment> Services used by this
service </rdfs:comment>

<rdfs:domain rdf:resource =
“#WebService” >
<rdfs:type rdf:resource =
“http://www,w3c.org/2000/10/XMLSchema
#hypertext” />
</daml:DatatypeProperty>
.
.
. Other data properties
</rdf:RDF>

<rdfs:Class rdf:ID = ”WebService” >
<rdfs:lable> Web Service

</rdf:lable>
<rdfs:comment>Web Service part of
organizational SOA
</rdfs:comment>

</rdfs:Class

<daml:DatatypeProperty rdf:ID =
“serviceDependecy”>

<rdfs:lable> Service Dependency
</rdf:lable>

<rdfs:comment> Services used by
this service
</rdfs:comment>
<rdfs:domain rdf:resource =

“#WebService” >
<rdfs:type rdf:resource =
“http://www,w3c.org/2000/10/XML
Schema#hypertext” />

</daml:DatatypeProperty>

Fig.6 RDF Schema

This resulting schema can be used to describe all the
service metadata about the enterprise services. For
example we can define the service dependencies of
Customer Address Service as shown in Fig.7. It has
been limited to dependency attributes and the other
attributes have been excluded for brevity.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 389

http://www.w3c.org/1999/02/22-rdf-syntax-ns
http://www.w3c.org/1999/02/22-rdf-syntax-ns

Fig.7 Service Dependency Definition

5.3 Web Services Metadata Dissemination
This section describes various techniques that can be
adopted to distribute web service metadata and
configuration information to interested parties.

Discovery of web services is done by
interrogating UDDI registries, where basic service
description and location information is stored. The
UDDI tModel can be used to register the service
metadata file locations.

The second technique that can be used to
disseminate service related metadata is to modify
UDDI data model to accommodate service metadata.
The advantage of this technique is that metadata
regarding the service could be captured at the time
of service registration. Also, the service discovery
would be highly efficient. The main disadvantages
of this technique are that it would require
modification to the UDDI data model; requiring all
service consumer lookups for services to adapt to
this new model. Also, if the service characteristics
change after deployment, the information in the
registry would become outdated. To counter this
drawback the service provider would have the
additional burden of updating the registry every time
any service related metadata changes.

The third technique could be to use relational
databases to retain the service information. Using
this technique, a UDDI tModel would provide the
service consumer access to an interface that would
allow interrogation of the underlying relational
database. The advantages of this mechanism include
no changes to the UDDI data model, efficient
service discovery and dynamic updates to service

metadata and configuration. The main disadvantage
of this form of information dissemination is the
dependency of having an RDBMS available for
service configuration, creation of interfaces to store
and maintain metadata for service provider and an
additional interface for consumers to interrogate the
RDBMS for service metadata.

<?xml version = “1.0” encoding =
“UTF-8”>
<xmlns: wsMetadata =
"http://acme.com/ws/metadata.xsd">

<wsMetaData:WebService rdf:ID =
“customerAddressService”>
 <rdfs:lable> Customer Address
Service </rdfs:lable>

<wsMetaData:serviceDependency>
http://acme.com/ws/authentication
</wsMetaData:serviceDependency>

<wsMetaData:serviceDependency>
http://acme.com/ws/authorization
</wsMetaData:serviceDependency>
.
.
. Other properties
</wsMetaData:WebService>

Keeping in mind our original objective of
managing SOA complexity in a dynamic
environment, service metadata distribution apparatus
most suitable for our purpose is the use of tModels
to point to an external resource provided by the
service itself by means of a URL. For example, our
Customer Address Service’s metadata can be made
accessible similar to the way WSDL files are
accessed: http://acme.com/ws/customer?metadata.

6 Conclusion and Future Work
In this paper we have proposed a framework for
service metadata management that can help
Enterprise Architects combat complexity in their
organizational SOA. The is framework provides a
basic set of web service characteristics and an RDF
DAML+OIL based ontology to describe these in a
metadata document. Furthermore the framework
also provides a means of disseminating this
information utilizing the capabilities of exiting
UDDI registries.

Based on the RDF DMAL+OIL languages this
paper proposes a metadata management ontology for
web services, basic set of service metadata
properties and a service metadata distribution
technique that would alleviate some of the
complexity problems in Service-Oriented
Architectures. This framework can provide
architects visibility into service relations,
dependencies and other non-functional
characteristics. As service implementations change
in a dynamic environment this framework would
give an accurate picture of the current state of an
organizations SOA.

Future work of interest includes creating a
comprehensive list of service characteristics and
their classification that are of use to people
maintaining and extending Enterprise SOA. This
would allow for the service metadata ontology to
encompass additional service concerns.

Another area of interest is to develop an
autonomous agent to gather metadata information
from the organizational SOA to be represented in a
graphical format. This would allow architects to
quickly identify critical services, their dependencies
and relationships with other services.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 390

http://acme.com/ws/customer?metadata

Acknowledgements
The authors wish to acknowledge King Fahd
University of Petroleum and Minerals (KFUPM) for
utilizing the various facilities in carrying out this
research.

References:
[1] Ivar Jorstad, Schahram Dustdar, and Do Van

Thanah, A Service Oriented Architecture
Framework for Collaborative Services,
Proceedings of the 14th IEEE International
Workshop on Enabling Technologies
(WETICE’ 05), IEEE 2005.

[2] Firdaus Bhathena, Combat Increasing IT
Complexity, Enterprise Architect Magazine,
Winter 2006.

[3] Peltz and C.Web, Services orchestration and
choreography, Computer, Vol. 36, No. 10, Oct.
2003, pp. 46 – 52.

[4] Sayed Hashmi, Service-Oriented Architecture
Explained, O’Reilly, August 2003,
http://www.ondotnet.com/pub/a/dotnet/2003/08
/18/soa_explained.html

[5] Stan Kleijnen and Srikanth Raju, An Open Web
Services Architecture, Queue, Vol. 1, No. 1,
2003, pp. 38-46.

[6] A. Shaikh Ali, O.F. Rana, R. Al-Ali, and D.W.
Walker, UDDIe: An extended registry for Web
services, Proceedings of the Applications and
the Internet Workshops, 27-31 Jan. 2003 pp.85
– 89.

[7] Keita Fujii and Tatsuya Suda, Semantic –
Based Dynamic Service Composition, IEEE
Journal on selected areas in communications,
Vol 23, No. 12, Dec 2005.

[8] Object Management Group’s CORBA website
http://www.omg.org/corba

[9] Microsoft’s DCOM website
http://msdn.microsoft.com/library/default.asp?u
rl=/library/en-
us/dndcom/html/msdn_dcomarch.asp

[10] Booth et, al. (editors) W3C Working Group
Note 11: Web Services Architecture, World
Wide Consortium (W3C), February 2004,
http://www.w3.org/TR/ws-arch/#stakeholder

[11] Duane Nickull et. al., Service-Oriented
Architecture Whitepaper Adobe Systems
Incorporated 2005.

[12] Jim Barry, Jean Paoli, C. M. Sperberg-
McQueen, Eva Maler, and Francois Yergeau,
Extensible Markup Language (XML) 1.0, Third

Edition, W3C Recommendation 04, Feb 2004
http://www.w3.org/TR/REC-xml

[13] Erik Christensen, Francisco Curbera, Greg
Meredith, and Sanjiva Weerawarana, Web
Services Description Language (WSDL) 1.1;
W3C Note 15, Mar 2001
http://www.w3.org/TR/wsdl

[14] Luc Clement, Andrew Hately, Claus von
Riegen, and Tony Rogers, UDDI Spec
Technical Committee Version 3, Published 19,
Oct 2004

[15] Martin Gudgin, Marc Hadley, Noah
Mendelsohn, Jean-Jacques Moreau, Canon
Henrik, and Frystyk Nielsen, SOAP Version 1.2
Part 1: Messaging Framework, W3C
Recommendation 24 June 2003
http://www.w3.org/TR/soap12-part1

[16] Boris Lublinsky, SOA Design: Meeting in the
Middle, JavaPro Magazine 20, Aug 2004
http://www.ftponline.com/javapro/2004_10/ma
gazine/features/blublinsky

[17] Jiamao Liu, Ning Gu, Yuwei Zong, Zhigang
Ding, and Quan Zhang, Service Registration
and Discovery in a Domain-Oriented UDDI
Registry, The Fifth International Conference on
Computer and Information Technology, CIT
21-23 Sept. 2005, pp. 276 – 283.

[18] V. Tosic and H. Lutfiyya, Web Service
Offerings Language (WSOL) Support for
Context Management of Mobile/Embedded
XML Web Services, Advanced International
Conference on Internet and Web Applications
and Services, 19-25 Feb. 2006, pp.156 – 156.

[19] David Beckett, Brain McBride, RDF/XML
Syntax Specification (Revised), W3C
Recommendation 10 Feb. 2004,
http://www.w3.org/TR/rdf-syntax-grammar

[20] DAML web site http://www.daml.org
[21] DAML+OIL Ian Horrocks et. al.; March 2001,

http://www.daml.org/2000/12/daml+oil-index

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 391

http://www.ondotnet.com/pub/a/dotnet/2003/08/18/soa_explained.html
http://www.ondotnet.com/pub/a/dotnet/2003/08/18/soa_explained.html
http://www.omg.org/corba
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp
http://www.w3.org/TR/ws-arch/#stakeholder
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap12-part1
http://www.ftponline.com/javapro/2004_10/magazine/features/blublinsky
http://www.ftponline.com/javapro/2004_10/magazine/features/blublinsky
http://www.w3.org/TR/rdf-syntax-grammar
http://www.daml.org/
http://www.daml.org/2000/12/daml+oil-index

