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Abstract: Computation of the eigenvalues of a symmetric tridiagonal matrix is a problem of great relevance.
Many linear algebra libraries provide subroutines for solving it. But none of them is oriented to be executed
in heterogeneous distributed memory multicomputers. In this work we focus on this kind of platforms. Two
different load balancing schemes are presented and implemented. The experimental results show that only the
algorithms that take into account the heterogeneity of the system when balancing the workload obtain optimum
performance. This fact justifies the need of implementing specific load balancing techniques for heterogeneous
parallel computers.
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1 Introduction

Computation of the eigenvalues of a symmetric tridi-
agonal matrix is a problem of great relevance in nu-
merical linear algebra and in many engineering fields,
mainly due to two reasons: first, this kind of matri-
ces arises in the discretisation of certain engineering
problems and secondly, and more important, this op-
eration is the main computational kernel in the com-
putation of the eigenvalues of any symmetric matrix
when tridiagonalisation techniques are used as a pre-
vious step.

Nowadays, there are a large amount of eigenvalue
computation algorithms that exploit the tridiagonality
properties of the matrix. Four main techniques can be
found in the specialised literature to solve this prob-
lem: QR iteration, homotopy method, bisection and
multisection methods and divide and conquer tech-
niques. None of them is clearly superior to the rest
since every one presents exclusive advantages, for ex-
ample: computing all matrix eigenvalues or just a de-
fined subset of them, precision of the results or simul-
taneous eigenvector computation. See [1] for an ex-
haustive comparison.

In [2] Badı́a and Vidal proposed two parallel bi-
section algorithms for solving the symmetric tridiag-
onal eigenproblem on distributed memory multicom-
puters, including a deep study of the two step bisec-
tion algorithm. In that work, special emphasis was put

in load balancing since this is the main difficulty when
parallelising the bisection algorithm for the computa-
tion of the eigenvalues of a symmetric tridiagonal ma-
trix.

Both, ScaLAPACK subroutines and those pre-
sented in [2] achieve good performance in homo-
geneous distributed memory multicomputers. We
can define an homogeneous distributed memory mul-
ticomputer as a distributed memory multicomputer
where all the processors are equal in computing and
communication capabilities. In this work we focus
on heterogeneous distributed memory multicomput-
ers, those formed by processors with different com-
puting and communication capabilities. These kind of
platforms are expected to be the best solution in order
to achieve great performance/cost ratio, to reuse ob-
solete computational resources or simply to obtain the
maximum performance from several powerful com-
puters with different architectures but able to work co-
ordinately.

Parallel numerical linear algebra libraries, like
ScaLAPACK, do not take into account the possible
heterogeneity of the hardware and, for that reason,
their performance considerably decrease when work-
ing in this kind of systems. There is a big gap in this
context and, nowadays, the design of parallel linear
algebra libraries for heterogeneous architectures is a
must. The study of computational kernels and basic
algorithms is the previous step to achieve this objec-

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006       301



tive. In this work we present algorithms for the com-
putation of the eigenvalues of a symmetric tridiago-
nal matrix which attain good performance in hetero-
geneous multicomputer, analysing different load bal-
ancing strategies and different problem instances.

The rest of the paper is organised as follows: in
the next section we present the mathematical descrip-
tion of the problem and the sequential algorithm im-
plemented in the solution. Section 3 describes the het-
erogeneous computational model used. In Section 4,
the different parallel schemes used are described. In
Section 5, experimental results are presented. Finally,
the main conclusions of the work are given in Section
6.

2 Problem description and proposed
solution

2.1 Problem definition

Let T be a symmetric tridiagonal matrixT ∈ IRnxn,
defined as follows

T =

















a1 b1 0
b1 a2 b1

b2 a3
. . .

.. . . . . bn−1

0 bn−1 an

















(1)

The eigenvalues of T are then roots of its char-
acteristic polynomialp(z) = det(zI − T ). The set
of these roots is called the spectrum and is denoted by
λ(T ).

It is possible to compute specific eigenvalues of
a symmetric matrix by using theLDLT factorization
and exploiting the Sylvester inertia theorem. If

A − µI = LDLT A = AT ∈ Rnxn

is the LDLT factorization of A − µI with D =
diag(d1, . . . , dn), then the number of negativedi

equals the number ofλ(A) that are smaller thanµ [6].
Sequence(d1, . . . , dn) can be computed by us-

ing the following recurrence, wheredi = qi(c), i =
1, . . . , n for a givenc:

{

q0(c) = 1, q1(c) = a1 − c

qi(c) = (ai − c) −
b2
i−1

qi−1(c) i : 2, 3, . . . , n

Thanks to this result it is possible to define a func-
tionnegn(c) that for any value ofc computes the num-
ber of eigenvalues smaller thanc. With this function

it is easy to implement a bisection algorithm that iso-
lates eigenvalues ofT .

The bisection algorithm needs, for initialisation
purpose, an initial interval[a, b] which contains all the
eigenvalues of matrix T. The Gershgorin circle theo-
rem can be used to calculate it.

So, based on the initial interval[a, b] and through
the bisection algorithm is possible to isolate them
subintervals ]lbi, ubi] which contain a number of
eigenvaluesv ≤ maxval and will be used as the input
for the next step of the algorithm.

The importance of this step lies in the fact that
it will help us to discard parts of the real line where
no eigenvalue is located and therefore to reduce the
number of iterations of the extraction methods used in
the following step. In addition, the isolation step will
be used to balance the workload of the parallel algo-
rithms presented in Section 4, since the initial problem
is divided intom subproblems with similar workload,
susceptible to be solved in parallel.

The second step of the algorithm gets as input the
m subintervals]lbi, ubi] obtained in the previous step
to computem eigenvalues of matrixT .

There are several alternatives for the eigenvalues
extraction:

1. To apply again the bisection method described in
previous subsection.

2. To use a fast convergence method like Newton or
Laguerre [1].

3. To use standard computational kernels like LA-
PACK and let them choose the best method for
eigenvalue extraction. These subroutines are ex-
pected to efficiently implement the sequential so-
lution of the problem.

In this work, we have chosen to use LAPACK
subroutines, specifically the driver subroutinedstevr
which can compute the eigenvalues of a tridiagonal
symmetric matrix contained into an interval]vl, vu].

2.2 Test matrices

The bisection algorithm above described is problem-
dependent, because the number of iterations to reach
each eigenvalue with a specified precision could be
different. Thus, the behaviour of the algorithm de-
pends on the distribution of the eigenvalues along
the spectrum. In addition, the presence of clusters
of eigenvalues or hidden eigenvalues considerably in-
creases the extraction time, see [2].

Therefore, in order to perform a correct experi-
mental analysis of the algorithms implemented, a suit-
able set of test matrices should be chosen. In our case,
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we have chosen two kinds of matrices that present dif-
ferent eigenvalue distribution characteristics, so it can
affect the performance of the algorithm.

Table 1 shows matrices used.

3 Heterogeneous computational
model

3.1 PC model description

The following theoretical machine model is called PC
(Power-Communications). Let be a set ofp processors
interconnected via a communication network. This
model is expected to evaluate the power of each pro-
cessor as well as the communication capabilities of
the network.

First of all, a power vectorPt that summarizes the
relative power of each processor (related to the global
machine power) is defined. This relative power de-
pends on the operation and on the problem size, so
there is a vectorPt for each pair of operation and prob-
lem size. However, we consider here that the power
vector does not depend on time.

Secondly, the communication model used defines
the time needed to sendn bytes from processori to
processorj asTij(n) = β + nτ , whereβ stands for
network latency andτ is the bandwidth inverse. In or-
der to summarize the model two matricesBc andTc

are defined. The(i, j) entry of each matrix represents
theβ or τ applicable to the communication from pro-
cessori to j. We consider also here that both matrices
do not depend on time.

3.2 Model implementation

The cluster used to evaluate the model and to run the
parallel algorithms consists of four machines with six
processors. They are:

• Intel Pentium IV at 3.0 GHz with 1 MB of cache
and 1 GB of main memory.

• Intel Xeon two-processor at 2.2 GHz with 512
KB of cache and 4 GB of main memory.

• Intel Xeon two-processor at 2.2 GHz with 512
KB of cache and 4 GB of main memory.

• Intel Pentium IV at 1,6 GHz with 256 KB of
cache and 1GB of main memory.

A Gigabit Ethernet network is used to intercon-
nect the six machines with 1 Gbit/s of theoretical
bandwidth. Note that communications between each

CPU of the two-processors boards have been evalu-
ated with the same model.

Despite the algorithms have been implemented
and evaluated in this machine, they only depend on
the theoretical model. So, they can be executed in any
other distributed memory multicomputer with similar
predictable performance, under the condition of being
evaluated with the previous model.

3.3 Evaluation

Tables 2, 3, 4 and 5 show the result of the evaluation of
the cluster described before, following the PC model.
Tables 2 and 3 show the power vectorPt obtained in
the computation of eigenvalues of uniform spectrum
matrices and Wilkinson matrices with different sizes.
Tables 4 and 5 show the matricesBc andTc obtained
in the same experiments.

As it can be observed, the variations of the vector
powerPt with the size of the problem are very small.
This is a characteristic of this problem, because only
two vectors (main diagonal and subdiagonal) have to
be stored in memory. This may be different with prob-
lems which require more memory space.

4 Heterogeneous parallel schemes

4.1 Available alternatives

Among different techniques proposed in the literature
(see [2]) to parallelise the bisection method, proba-
bly the most effective is the computation of groups
of eigenvalues simultaneously in different processors.
However, this division could not be arbitrarly done,
since the performance of the parallel algorithm will be
determined by the correctness of the load balancing.

The problem of the load balancing is already
known in homogeneous parallel computing but it af-
fects more to the performance of the parallel algo-
rithms when the power and the communication capa-
bilities of the processors are not equal.

Different approaches can be taken to solve the
problem in our case:

1. To ignore the difference of power and commu-
nication capabilities and perform an equitable
workload distribution. With this approach, the
spectrum is divided into subintervals containing
the same number of eigenvalues.

2. Based on a heterogeneous machine model, like
the one presented on Section 3, perform a distri-
bution of the workload proportional to the power
and communication features of each processor.
Now, the spectrum is divided into subintervals
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Kind Elements Eigenvalues

Uniform spectrum ai = 0 {−n + 2k − 1}n
k=1

matrices bi =
√

i(n − i) Uniformly distributed

Wilkinson matrices ai =

{

m
2 − i + 1 i : 1, . . . , m

2
i − m

2 i : m
2 + 1, . . . ,m

Most eigenvalues grouped

m =

{

n with even n

n + 1 with odd n
in clusters of two.

Table 1: Test Matrices

P0 P1 P2 P3 P4 P5
0.2245 0.1740 0.1692 0.1605 0.1598 0.1120

Table 2: Relative power vectorPt for uniform spectrum matrices eigenvalue computation

P0 P1 P2 P3 P4 P5
0.2219 0.1747 0.1681 0.1635 0.1607 0.1113

Table 3: Relative power vectorPt for Wilkinson matrices eigenvalue computation

P0 P1 P2 P3 P4 P5
P0 0 2.5074E-05 4.6149E-05 4.5745E-05 4.0809E-05 5.1629E-05
P1 2.4774E-05 0 4.6042E-05 4.5852E-05 4.0348E-05 5.317E-05
P2 4.6268E-05 4.6073E-05 0 2.4727E-05 4.2951E-05 5.2753E-05
P3 4.564E-05 4.5583E-05 2.4898E-05 0 4.1091E-05 5.2756E-05
P4 4.0829E-05 4.0706E-05 4.1424E-05 4.0211E-05 0 7.8713E-05
P5 5.0371E-05 4.9166E-05 5.1836E-05 4.6695E-05 1.0234E-4 0

Table 4: Latency matrixBc (s)

P0 P1 P2 P3 P4 P5
P0 0 6.4244E-09 1.4045E-08 1.1898E-08 2.1316E-08 5.5421E-08
P1 6.3307E-09 0 1.2879E-08 1.3066E-08 2.1954E-08 5.5108E-08
P2 1.2966E-08 1.3761E-08 0 6.3347E-09 2.0886E-08 5.2581E-08
P3 1.2548E-08 1.3327E-08 6.3294E-09 0 2.0014E-08 5.4863E-08
P4 2.1369E-08 2.1076E-08 2.269E-08 2.0776E-08 0 1.0859E-07
P5 2.1369E-08 5.4601E-08 5.6684E-08 5.1962E-08 1.0991E-07 0

Table 5: Inverse bandwidth matrixTc (s)

with a number of eigenvalues proportional to the
relative power of each processor.

3. To implement a dynamical workload distribution
algorithm based on the master-slave program-
ming paradigm. With this approach, the spec-
trum is divided into a number of subintervals
m ≫ p that are assigned to the processors on
demand.

4.2 Implemented algorithms

Based on the algorithm presented in Section 2 and on
the approaches for the solution of the load balancing
problem described before, we have implemented a se-
quential and five parallel algorithms.

Sequential algorithm. A1: This version implements
sequentially the bisection algorithm described in
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Section 2.

ScaLAPACK algorithm. A2: This version com-
putes the eigenvalues of the matrixT by means
of calling ScaLAPACK subroutinepdstebz.
This subroutine uses the bisection method for
isolating and extracting the eigenvalues.

Static algorithm. A3: In this version we statically
assign to the processori = 0, . . . , p−1 the calcu-
lation of eigenvalues[in

p
+1, (i+1)n

p
] according

to an ascending classification of them.

This algorithm have been implemented by means
of p concurrent calls to the LAPACK subroutine
dstevr that takes as input parameters two inte-
gers that define the subset of desired eigenvalues.

We have used this algorithm to model the cluster
and to obtain the data shown in Section 3.3. Also
it could be a better comparative reference for the
rest of the algorithms as it has been implemented
with a similar style and without the optimisation
of ScaLAPACK library.

Proportional Static algorithm. A4: This version
uses a similar strategy to the one described
in the previous algorithm but the number of
eigenvalues assigned to each processor depends
on its relative power.

Dynamic algorithm. A5: This version implements,
in parallel, both steps of bisection algorithm de-
scribed in Section 2. The first step of the al-
gorithm consists of dividing the interval[a, b]
which contains all the eigenvalues intop subin-
tervals of length equal tob−a

p
. Each of this subin-

tervals is assigned to a processor that applies the
isolation step described in 2. Finally, the results
are gathered by the master process.

In order to fulfil them ≫ p constraint, parame-
ter max val of the isolation algorithm has been
adjusted to 1. Thusm is equal to problema size
n.

Finally, the extraction step has been implemented
with the master-slave technique described be-
fore. Note that the most powerful processor has
been chosen to allocate the master process. The
master process also assigns intervals to this most
powerful processor. In this way it acts as a slave
process too, in order to take advantage of its
greater power.

Modified Dynamic algorithm. A6: This version is
similar to the previous one, but them ≫ p con-
straint has been relaxed. Instead ofmax val =
1, we have assigned values between 1 and 100.

We have done it for two reasons; first, to dimin-
ish the drawbacks produced by clusters of eigen-
values in the isolation step and, second, to study
the impact in the execution time of the number of
eigenvalues computed in the extraction step.

5 Experimental Analysis

Tables 6, 7 and 8 show the execution time of the six
algorithms presented. For both kind of matrices, the
Proportional Static algorithm (A4) and the Modified
Dynamic algorithm (A6) present the smaller execu-
tion times, followed by ScaLAPACK (A2) and by Dy-
namic algorithm (A5) that present similar results. Fi-
nally the Static algorithm (A3) has the poorest perfor-
mance of all tested algorithms.

n Uniform Wilkinson
5000 20.14 8.63
7000 38.80 16.50
9000 63.35 27.07
11000 94.13 39.94
13000 130.69 55.38
15000 172.80 74.31

Table 6: Execution time (s), on P0, for the sequential
algorithm (A1) on both kinds of matrices

n A2 A3 A4 A5 A6
5000 5.15 6.39 4.44 5.21 4.43
7000 9.98 12.41 8.61 9.78 8.54
9000 16.29 20.22 13.94 15.88 13.95
11000 24.45 30.15 20.66 23.68 20.78
13000 33.85 42.12 28.76 33.00 28.68
15000 45.67 56.50 37.96 43.72 38.04

Table 7: Execution time (s) for the 5 parallel algo-
rithms on uniform spectrum matrices

Tables 9 and 10 show the speedup of the two
best parallel versions, A4 and A6, with regard to
the ScaLAPACK version (algorithm A2). Both al-
gorithms present similar performance, with a slightly
better speedup when they are applied on Wilkinson
matrices.

6 Conclusions

In the present work one sequential and five parallel al-
gorithms have been presented for the extraction of the
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n A2 A3 A4 A5 A6
5000 2.48 2.98 2.03 3.48 2.08
7000 4.70 5.68 3.86 6.72 3.92
9000 7.68 9.36 6.33 11.15 6.35

11000 11.45 13.96 9.38 17.42 9.45
13000 15.95 19.63 13.04 24.58 13.15
15000 21.21 25.99 17.39 32.85 17.35

Table 8: Execution time (s) for the 5 parallel algo-
rithms on Wilkinson matrices

n 5000 7000 9000 11000 13000 15000

A4 1.16 1.16 1.17 1.18 1.18 1.2
A6 1.16 1.17 1.17 1.18 1.18 1.2

Table 9: Speedup of algorithm A4 and A6 with regard
to algorithm A2 (ScaLAPACK) on uniform spectrum
matrices

n 5000 7000 9000 11000 13000 15000

A4 1.22 1.22 1.21 1.22 1.22 1.22
A6 1.2 1.2 1.21 1.21 1.21 1.22

Table 10: Speedup of algorithm A4 and A6 with re-
gard to algorithm A2 (ScaLAPACK) on Wilkinson
matrices

eigenvalues of a symmetric tridiagonal matrix. Three
of them have been specifically designed to be executed
in heterogeneous distributed memory multicomputers.

The parallel algorithms implemented are based on
the bisection method. Basically, two strategies have
been used: a static strategy, trying to get a good load
balancing through a distribution of processes propor-
tional to the power of processors, and a dynamic strat-
egy, based on the master-slave paradigm. For the im-
plementation of the dynamic algorithms we have used
a bisection algorithm with two steps: isolation and ex-
traction. The bisection technique has been chosen to
implement the isolation step. For the extraction step
LAPACK subroutines have been used.

Finally, these are the main conclusions of the
work:

• The algorithms that take into account the hetero-
geneity of the system when balancing the work-
load (A4, A5 and A6) always obtain better exe-
cution time than those that do not that (A2 and
A3). This fact justifies the need of implementing
specific load balancing techniques for heteroge-
neous architectures.

• The execution time of the Dynamic algorithm
(A5) is always larger than that of the Modified
Dynamic algorithm (A6). This is due to the ex-
tra effort made in the isolation step. In addition,
the presence of clusters of eigenvalues (Wilkin-
son matrices) increases the number of iterations
needed in this step.

• The fact that Proportional Static algorithm (A4)
and Modified Dynamic algorithm (A6) present
almost the same execution time validates both
strategies to get a good load balancing. How-
ever, the effort necessary to reach a good work-
load balance in A4 (compute the power vector for
each kind of matrix and problem size) could be
a huge amount of extra work. Therefore, the au-
thors consider the Modified Dynamic algorithm
(A6) is the most suitable solution for heteroge-
neous environments.

• The fact that algorithms A4 and A6 present better
performance than ScaLAPACK subroutines jus-
tifies the need of designing and implementing nu-
merical linear algebra libraries for heterogeneous
parallel architectures.
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