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Abstract:In this paper, we propose a penalized inter-cluster separation (PICS) fuzzy clustering algorithm by adding
a penalty term to the inter-cluster separation (ICS) algorithm. Numerical comparisons are made for several fuzzy
clustering algorithms according to criteria of accuracy and computational efficiency. The results show that the
PICS has better accuracy and efficiency. Image segmentation is an important step in any image analysis system.
Existing various segmentation methods for magnetic resonance image (MRI) have been used to differentiate abnor-
mal and normal tissues. We apply the PICS algorithm to the MRI segmentation of an ophthalmic patient. In these
MRI segmentation results, we find that PICS provides useful information as an aid to diagnosis in ophthalmology.
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1 Introduction

Cluster analysis is a method of grouping data with
similar characteristics into larger units of analysis.
Since Zadeh [17] first articulated fuzzy set theory
which gave rise to the concept of partial member-
ship, based on a membership function, fuzziness
has received increasing attention. Fuzzy clustering,
which produces overlapping cluster partitions, has
been widely studied and applied in various areas. In
fuzzy clustering, the fuzzyc-means (FCM) clustering
algorithm is the best known and most powerful meth-
ods used in cluster analysis ([1]).

The idea of penalization is important in statisti-
cal learning. For example, ridge regression shrinks
the regression coefficients by imposing a penalty on
their size. Based on penalty idea, we added a penalty
term to the inter-cluster separation (ICS) clustering
algorithm ([6]) and then proposed the penalized ICS
(PICS). Numerical comparisons are made with several
fuzzy clusterings according to criteria of accuracy and
computational efficiency.

MRI segmentation provides important informa-
tion for detecting a variety of tumors, lesions, and
abnormalities in clinical diagnosis. As described by
Yang et al. ([12]), most medical images often present
overlapping gray-scale intensities for different tissues.
MRI medical imaging uncertainty is widely presented
in data because of the noise and blur in acquisition and

the partial volume effects originating from the low res-
olution of the sensors. In particular, borders between
tissues are not clearly defined and memberships in the
boundary regions are intrinsically. Therefore, fuzzy
clustering methods are suitable for the MRI segmen-
tation (see [4],[7], [8], [10],[12]). In this paper, the
PICS algorithm is applied to the segmentation of mag-
netic resonance image (MRI) of an ophthalmic pa-
tient. In these MRI segmentation results, we find that
PICS provides useful information as an aid to diagno-
sis in ophthalmology.

2 A PICS fuzzy clustering algorithm

Let X = {x1, · · · , xn} ⊂ Rs be a data set and let
c be a positive integer greater than one. A partition
of X into c clusters is represented by mutually dis-
joint setsX1, · · · , Xc such thatX1 ∪ · · · ∪ Xc = X
or equivalently by the indicator functionsu1, · · · , uc

such thatui(x) = 1 if x is in Xi andui(x) = 0 if
x is not in Xi for all i = 1, · · · , c. This is known
as clusteringX into c clustersX1, · · · , Xc by a hard
c-partition {u1, · · · , uc}. A fuzzy extension allows
ui(x) to take on values in the interval[0, 1] such
that

∑c
i=1 ui(x) = 1 for all x in X. In this case,

{u1, · · · , uc} is called a fuzzyc-partition ofX ([?]).
Thus, the FCM objective functionJFCM is defined as
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([1])

JFCM (u, a) =
n∑

j=1

c∑

i=1

um
ij ||xj − ai||2

whereu = {u1, · · · , uc} is a fuzzyc-partition with
uij = ui(xj) being the membership of the data point
xj in clusteri, a = {a1, · · · , ac} is the cluster centers,
the weighting exponentm is a fixed number greater
than one establishing the degree of fuzziness and the
notation||xj−ai|| denotes the Euclidean distance be-
tween the data pointxj and the cluster centerai. Thus,
the FCM clustering algorithm is an iteration through
the necessary conditions for minimizingJFCM with
the following update equations:

ai =

∑n
j=1 um

ij xj∑n
j=1 um

ij

,

and

uij =
||xj − ai||−2/(m−1)

∑c
k=1 ||xj − ak||−2/(m−1)

.

The FCM algorithm is a well-known and powerful
method in clustering analysis. One of important pa-
rameters in the FCM is the weighting exponentm.
When m is close to one, the FCM approaches the
hardc-means algorithm. Whenm approaches infin-
ity, the only solution of the FCM will be the mass
center of the data set. Therefore, the weighting expo-
nentm plays an important role in the FCM algorithm.
Recently, Yu and Yang [15] provided the theoretical
analysis for selecting the parameters in some general-
ized FCM algorithms that including FCM.

The mixture maximum likelihood approach to
clustering is a remarkable model-based clustering
method. Scott and Symons [9] proposed the so-called
classification maximum likelihood (CML) procedure,
named first in Bryant and Williamson [2], that many
of the commonly used clustering procedures corre-
spond to applications of the maximum likelihood ap-
proach for normal groups with various restrictions on
the covariance matrices and with the indicator clas-
sification variables of group membership associated
with the data treated as unknown parameters. Yang
[11] made the fuzzy extension of the CML proce-
dure in conjunction with fuzzyc-partitions and called
it a class of fuzzy CML procedures. On the other
hand, the idea of penalization is important in statisti-
cal learning. For example, ridge regression shrinks the
regression coefficients by imposing a penalty on their
size. Combining the CML procedure and penalty idea,
Yang ([11]) added a penalty term to the FCM objec-
tive functionJFCM and then extended the FCM to the

so-called penalized FCM (PFCM). Thus, the PFCM
objective function is defined as follows:

JPFCM (u, a) =
n∑

j=1

c∑

i=1

um
ij ||xj − ai||2

−w
n∑

j=1

c∑

i=1

um
ij ln αi

wherew ≥ 0, ∀i, αi ≥ 0 and
∑c

i=1 αi = 1. The
necessary conditions for a minimum ofJPFCM (u, a)
are

ai =

∑n
j=1 um

ij xj∑n
j=1 um

ij

, αi =

∑n
j=1 um

ij∑c
i=1

∑n
j=1 um

ij

,

and

uij =
(||xj − ai||2 − w ln αi)−1/(m−1)

∑c
k=1(||xj − ak||2 − w ln αk)−1/(m−1)

.

Based on the numerical results of Yang and Su [13],
the PFCM is more accurant than FCM. Furthermore,
the PFCM has been applied in various areas (cf. [4],
[5], [14]).

On the other hand, by minimizing the FCM ob-
jective function and simultaneously maximizing the
inter-cluster separation (ICS) measure,Özdemir and
Akarun [6] proposed the ICS clustering algorithm
with the objective function

JICS(u, a) =
1
n

n∑

j=1

c∑

i=1

(
µm

ij ||xj − ai||2

−γ

c

c∑

t=1

||ai − at||2
)
,

where the parameterγ ≥ 0. Thus, the update equa-
tions for the ICS algorithm are as follows (see [6] and
[16]):

ai =
1
n

∑n
j=1 µm

ij xj − 2γ
c

∑c
t=1 at

1
n

∑n
j=1 µm

ij − 2γ
,

µij =
||xj − ai||−2/(m−1)

∑c
k=1 ||xj − ak||−2/(m−1)

.

We see that the PFCM algorithm has more accu-
racy than the FCM method. It means that the penalty
term can improve the performance of FCM. To im-
prove the performance of ICS, we consider adding the
penalty term (−w

∑n
j=1

∑c
i=1 um

ij lnαi) to ICS and
call the penalized ICS (PICS). The PICS objective
function is given by

JPICS(u, a) = JICS(u, a)

−w
n∑

j=1

c∑

i=1

um
ij lnαi.
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The update equations for minimizers ofJPICS(u, a)
are

αi =

∑n
j=1 um

ij∑c
k=1

∑n
j=1 um

kj

; i = 1, 2, · · · , c,

ai =
1
n

∑n
j=1 um

ij xj − 2γ
c

∑c
t=1 at

1
n

∑n
j=1 um

ij − 2γ
;

i = 1, 2, · · · , c,

uij =
||xj − ai||2 − w lnαi)−1/(m−1)

∑c
k=1(||xj − ak||2 − w ln αk)−1/(m−1)

;

i = 1, 2, · · · , c; j = 1, 2, · · · , n.

Thus, the PICS algorithm can be summarized as fol-
lows:

PICS Algorithm
Set the iteration counter̀ = 0 and choose the
initial valuesa

(0)
i , i = 1, · · · , c and the initial

valuesµ(0)
ij , i = 1, · · · , c; j = 1, · · · , n.

Step 1. Findα(`+1)
i using (2);

Step 2. Finda(`+1)
i using (3);

Step 3. Findµ(`+1)
ij using (4);

IF max
i
‖z(`+1)

i − z
(`)
i ‖ < ε, THEN stop;

ELSEl = l + 1 and go to step1.

3 Numerical comparisons and appli-
cation to MRI segmentation

In this section, we make a comparison of four differ-
ent algorithms: FCM, PFCM, ICS and PICS, accord-
ing to the bivariate normal mixtures of two classes
under the accuracy and computational efficiency cri-
teria. The accuracy of an algorithm is measured by
the mean squared error (MSE) that is the average sum
of squared error between the true parameter and its
estimate inN repeated trials. The computational ef-
ficiency of an algorithm is measured by the average
numbers of iterations (NI) inN repeated trials.

Let N2(a,Σ) represent the bivariate normal with
mean vectora and covariance matrixΣ. As the sep-
aration between subpopulation is determined by vary-
ing the parameters of subpopulations, without loss of
generality we give that one subpopulation bivariate
normal is mean vectora1 = 0 and identity covariance
matrix I and the other is mean vectora2 and identity
covariance matrixI . That is, we consider the random
sample of data drawn fromα1N2(0, I)+α2N2(a2, I)
with α2 = 1 − α1. We also design various bivari-
ate normal mixture distributions shown in Table 1. In
Tests A1 and A2, we consider a well-known clustering

problem [3] where there is an inordinate difference in
the number of members in each cluster. But Test A3
has almost equal size in each cluster and Test A4 has
well-separated clusters.

Table 1. Various bivariate normal mixture distri-
butions for the numerical tests

Test mixture model

A1 0.1N2(0, I) + 0.9N2

((
1
0

)
, I

)

A2 0.3N2(0, I) + 0.7N2

((
1
0

)
, I

)

A3 0.5N2(0, I) + 0.5N2

((
1
0

)
, I

)

A4 0.1N2(0, I) + 0.5N2

((
3
0

)
, I

)

In each test, we consider the sample sizen = 100,
ε = 0.0001 andN = 500. The MSE is calculated by

1
2N

N∑

k=1

2∑

i=1

||â(k)
i − ai||2

where â(k)
i is the estimated mean vector for thekth

trial andai is the true mean vector. How to selectm
depends on the user. Because most researchers have
usedm = 2, we also choosem = 2 in this section.
Next, we choosew = 0.5, 1 and 2 in PFCM, and
γ = 0.003, 0.0005 in ICS.

The numerical results are shown in Table 2. Com-
pared PFCM with FCM, we see that PFCM withw =
1.0 can lead to a MSE reduction of27.6% in Test A1,
27.6% in Test A1,44.0% in Test A2,49.4% in Test
A3 and4.9% in Test A4, respectively. These results
illustrate the penalty term(−w

∑n
j=1

∑c
i=1 um

ij ln αi)
to the FCM objective function can improve the accu-
racy of FCM. This is why we add the penalty term
(−w

∑n
j=1

∑c
i=1 um

ij lnαi) to the ICS objective func-
tion. Compared PICS with ICS, we see that: (i) PICS
(γ = 0.003) with w = 1.0 can lead to a MSE re-
duction of31% in Test A1,47.9% in Test A2,48.8%
in Test A3 and19.3% in Test A4, respectively; (ii)
PICS (γ = 0.0005) with w = 1.0 can also lead
to a MSE reduction of33.0% in Test A1,54.9% in
Test A2, 55.1% in Test A3 and19.9% in Test A4,
respectively. Based on the above results, we find
that the reduction percentage of PICS is greater than
PFCM. It illustrates that the effect of the penalty term
(−w

∑n
j=1

∑c
i=1 um

ij lnαi) on ICS algorithm is sig-
nificant.

Moreover, we also find that: (i) PICS(γ = 0.003)
with w = 1.0 has the smallest MSE in Test A1; (ii)
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PICS (γ = 0.0005) with w = 1.0 has the smallest
MSE in Tests A2 and A3; (iii) PFCM and PICS(γ =
0.003) with w = 1.0 have good accuracy in Tests A2
and A3; (iv) As we expected, five different algorithms
have good accuracy in Test A4.

Table 2. Accuracy and computational efficiency for different clustering algorithms

Test FCM PFCM ICS
w = 0.5 w = 1.0 w = 2.0 γ = 0.003 γ = 0.0005

A1 MSE 0.3557 0.3154 0.2576 0.3902 0.3560 0.3948
NI 84.5 96.8 109.4 35.6 84.6 118.4

A2 MSE 0.1763 0.1346 0.0987 0.2615 0.1918 0.1885
NI 49.2 46.1 64.5 50.1 64.9 64.1

A3 MSE 0.1424 0.0958 0.0720 0.1893 0.1362 0.1400
NI 39.9 37.1 65.9 65.6 39.7 36.3

A4 MSE 0.0142 0.0128 0.0135 0.0118 0.0150 0.0156
NI 8.2 9.1 10.4 16.2 8.5 8.2

Table 2. (Continued)

Test PICS (γ = 0.003) PICS (γ = 0.0005)
w = 0.5 w = 1.0 w = 2.0 w = 0.5 w = 1.0 w = 2.0

A1 MSE 0.3241 0.2455∗ 0.3457 0.2986 0.2647 0.3832
NI 76.3 113.8 35.4 83.3 109.8 36.8

A2 MSE 0.1369 0.0999 0.2547 0.1407 0.0850∗ 0.2441
NI 51.4 74.6 53.7 44.3 67.5 48.6

A3 MSE 0.1009 0.0697 0.1869 0.1023 0.0628∗ 0.1706
NI 37.2 56.1 70.9 42.5 51.3 60.6

A4 MSE 0.0126 0.0121 0.0126 0.0128 0.0125 0.0112∗
NI 9.1 10.6 16.1 8.9 10.3 16.3

∗ represents the smallest value.

Next, we use PICS(γ = 0.003, 0.0005 and
w = 1.0) in a real case study of MRI segmentation
to differentiate between normal and abnormal tissues
in ophthalmology. The MRI data sets are from a 2-yr
old female patient that had been analyzed by Yang
et al. [12]. She was diagnosed with retinoblastoma
of her left eye, an inborn malignant neoplasm of the
retina with frequent metastasis beyond the lacrimal
cribrosa. The MRI images showed an intra-muscle
cone tumor mass with high T1-weight signal images
and low T2-weight signal images in the left eyeball.
The tumor measured 20 mm in diameter and occupied
nearly the entire vitreous cavity. There was a shady
signal abnormality all along the optic nerve reaching
as far as the optic chiasma near the brain. Here we
analyzed two MRI data sets. The first MRI data set is
illustrated in Figs. 1 & 2. The second MRI data set is
shown in Fig. 3.

We first attempt to cluster the full size images
(Figs. 1 & 2) into the same five clusters as used by
Yang et al. [12]. The categories are as follows: Mus-
cle tissue, connective tissue, nervous tissue, the lens,
and tumor tissue. According to Yang et al. [12], a
window segmentation (Fig. 3 for the second MRI
data set) can be used to enhance areas of the tumor
to better detect small tumors. We also apply PICS
(γ = 0.003, 0.0005 andw = 1.0) to a window seg-
mentation illustrated in Fig. 3. The lens and muscle

tissue are excluded from the window so that the origi-
nal five categories are reduced to three; connective tis-
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sue, nervous tissue and tumor tissue. A gray scale his-
togram comparison shows that there are actually three
peaks appearing in the segmentation window image.

The two pictures (Figs. 1 & 2) were processed
at 400 × 286 pixels. The pictures are clustered into
four tissue classes and one tumor class. From the
red circle on the full size two dimensional MRI in
Fig. 1, we can clearly detect white tumor tissue at
the chiasma. PICS withγ = 0.003, w = 1.0 (see
Fig. 1.1) andγ = 0.0005, w = 1.0 (see Fig. 1.2) are
able to distinguish the tumor from the healthy tissue
using five clusters. MRI medical imaging uncertainty
is widely presented in the collected data because
of noise in the partial volume effects originating
from the low resolution of the sensors. Another
factor causing uncertainty is the fact that the eyeball
moves during the imaging and it is difficult to control
this movement, especially in younger patients. A
distorted MR image, shown in Fig. 2, is used here
to illustrate how PICS withγ = 0.003, w = 1.0 and
γ = 0.0005, w = 1.0 are able to detect tumorous
tissue, despite uncertainty.

Fig. 3 in the second MRI data set was processed
at 283 × 292 pixels. From this picture, one lesion
was clearly seen in the MR image. However, some
fuzzy shadows of lesions were suspected of tumor in-
vasion. These suspected abnormalities are not easily
ascertained to be tumorous. For the purpose of de-
tecting these abnormal tissues, a window of the area
around the chiasma is selected from the original MR
images as shown in Fig. 3. We then applied PICS
with γ = 0.003, w = 1.0 andγ = 0.0005, w = 1.0
to the window selection as illustrated in Figs. 3. We
can see occult lesions (red circles) clearly enhanced
with Figs. 3.1 and 3.2. This shows that PICS with
γ = 0.003, w = 1.0 andγ = 0.0005, w = 1.0 give
good results in MRI segmentation.

4 Conclusions

In this paper we added a penalty term to the ICS
algorithm [6] and then extended the ICS to the so-
called penalized ICS (PICS). Numerical comparisons
are made for several fuzzy clusterings according to
criteria of accuracy and computational efficiency. The
results show that the PICS is better. Finally, the PICS
algorithms are applied in the segmentation of the mag-
netic resonance image (MRI) of an ophthalmic pa-
tient. In these MRI segmentation results, we find that
PICS provides useful information as an aid to diagno-
sis in ophthalmology.
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