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Abstract: The minimum degree spanning tree problem has been studied extensively. In this paper, we present
a polynomial time algorithm for the minimum degree spanning tree problem on directed acyclic graphs. The
algorithm starts with an arbitrary spanning tree, and iteratively reduces the number of vertices of maximum degree.
We can prove the algorithm must reduce a vertex of the maximum degree for each phase, and finally result in an
optimal tree. The algorithm terminates in O(mnlogn) time, where m and n are the number of edges and vertices
respectively.
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1 Introduction
The minimum degree spanning tree (MDST) problem
is that of constructing a spanning tree of an undi-
rected graph G = (V, E), whose maximal degree is
the smallest among all spanning trees of G. The prob-
lem is a generalization of the Hamilton Path problem,
thus can easily be shown to be NP-hard. The directed
version of the problem has a root vertex r ∈ V as part
of the input, asks to construct an incoming (or out-
going) spanning tree rooted at r for which the max-
imal indegree (outdegree for an outgoing spanning
tree) of a vertex is minimized. We call this problem
as DMDST problem in this paper. In the Steiner ver-
sion of the problems, along with the input graph, we
are also given a distinguished set of vertices D ⊆ V ;
the problem is to find a tree of minimum degree which
spans at least the set D. The two former problems are
the special cases of the minimum degree Steiner tree
problem when D = V .

Computing low degree trees is a fundamental
problem, and has many applications. Both these prob-
lems and their variants have been studied extensively
[1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13]. A survey on
minimum degree problems has appeared in a book on
approximation algorithms [9].

Fürer and Raghavachari [5] provided a polyno-
mial time algorithm to approximate the MDST prob-
lem to within one of optimal. In other words, their
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algorithm finds a spanning tree whose degree is at
most ∆∗ + 1 in polynomial time. Clearly no better
approximation algorithms are possible for this prob-
lem unless P=NP. Their algorithm also extends to the
Steiner version of the problem, but only works on
undirected graphs. The currently best known approxi-
mation algorithm for the DMDST problem is due to
Raghavachari [10]. The algorithm computes a tree
whose maximal degree is at most O(∆∗ + logn),
where ∆∗ is the degree of some optimal tree for the
problem, and n is the number of vertices. Fraigni-
aud [2] showed that the Steiner version of the DMDST
problem cannot be approximated within (1 − ε)ln|D|
for any ε > 0 unless NP ⊂ DTIME(nloglogn), as
opposed to the undirected version.

In this paper, we consider the problem of com-
puting minimum degree spanning trees of directed
acyclic graphs (DAG DMDST). In this special case,
given as input are a directed acyclic graph and a root
vertex. In contrast with the DMDST problem, the
DAG DMDST problem can be solved in polynomial
time. We present an exact algorithm for this prob-
lem. The running time of the algorithm is shown to be
O(mnlogn). The algorithm does not employ any ex-
haustive enumeration, and is likely to be much faster
in practice.

2 Definitions and notation
The input is an arbitrary directed acyclic graph G =
(V, E), and a root vertex r ∈ V . Let n be the number
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of vertices of G. We always assume r to be reachable
from all vertices of G.

Definition 1 A rooted spanning tree T of G is a sub-
graph of G with the following properties:
(1) T contains all the vertices of G but does not
contain any cycles.
(2) The outdegree of every vertex except r is exactly
one.
(3) There is a path in T from every vertex to r.

In other words, the subgraph of G with n − 1
edges in which there is a directed path from every ver-
tex to r is a spanning tree rooted at r. This is known
as an incoming spanning tree. One can also define the
notion of an outgoing spanning tree, in which r can
reach every vertex of G through directed paths. In this
paper, the spanning tree always refers to an incoming
spanning tree.

Let T be a spanning tree rooted at r. For each
edge (v, w) in T , we call w the parent of v, denoted
by p(v). Each vertex except r has a unique parent,
and r has none. Vertex v is an ancestor of u if there
is a directed path from u to v. We call u a descendent
of v if v is an ancestor of u. We define the subtree
of T rooted at v to be the subtree spanned by v and
all the descendents of v in T , denoted by Tv. Its ver-
tices set and edges set denoted by V (Tv) and E(Tv)
respectively.

The number of the edges entering into vertex v is
the degree of v, denoted by d(v). For a rooted span-
ning tree, let S∆ be the set of vertices whose degree is
∆, i.e. S∆ = {v|d(v) = ∆}. The degree of a rooted
spanning tree T , d(T ), is the maximum degree of any
of its vertices, d(T ) = max{d(v)|v ∈ V (T )}. In this
paper, the degree of a tree is always denoted by k. The
goal is to find a rooted spanning tree of minimum de-
gree.

3 The exact algorithm for the DAG
DMDST problem

Witness set is first proposed by Fürer and
Raghavachari [4] for the MDST problem. It is a
subset of vertices which can be used to bound the
degree of the spanning tree. Given G = (V, E) to be
an undirected simple graph. Let W be a subset of V
with size |W | = w. If removing W from G splits G
into t connected components, then the degree of any
spanning tree of G is not less than dw+t−1

w e.
Similarly, we can bound the degree of the optimal

rooted spanning trees of a DMDST instance.

Lemma 2 Let G = (V, E) be a directed graph and
r ∈ V . Suppose there are subsets of vertices W ⊂ V

and X ⊂ V that satisfy the following properties:
(a) r /∈ X ,
(b) For any x ∈ X , if there exists edge e = (x,w) ∈
E, then w ∈ W .
Then the degree of a DMDST tree rooted at r of G is
not less than

⌈ |X|
|W |

⌉
.

Proof: Let T ∗ be an optimal spanning tree rooted at
r for the DMDST problem. Since it is a rooted span-
ning tree, it contains a path from any vertex to the root.
By the conditions of the lemma, a path from a vertex
x ∈ X to r contains one incident edge into a vertex in
W . Therefore we have identified |X| incoming edges
to vertices in W . Therefore the average degree of ver-
tices in W is at least |X||W | , implying that there is at least

one vertex in T ∗ whose degree is
⌈ |X|
|W |

⌉
or more. ut

Lemma 3 Let Tv be a subtree rooted at v of a di-
rected acyclic graph G. There is no directed path from
v to any vertex in the set of vertices of Tv.

Proof: Suppose there is a path p1 from v to some
vertex w in the set of vertices of Tv. Since w is the
descendent of v in Tv, there is a path p2 from w to
v. p1 ∪ p2 is a directed cycle of G, thus violating the
acyclic property of G. ut

Lemma 4 Let T be a rooted spanning tree of degree
k of a directed acyclic graph G = (V, E). Let ∆∗
be the degree of a directed minimum degree spanning
tree. Let S be the set of vertices of degree k in T. Let
B be an arbitrary subset of vertices of degree k-1 in T.
Let X be the set of all the children of vertices in S∪B.
If there are no edges from X to V − (S ∪ B) of G,
then k = ∆∗.

Proof: Let witness set W be S ∪ B. By the theorem
hypothesis, for any x ∈ X , if edge e = (x,w) ∈ E,
then w ∈ W . Hence these sets X and W satisfy the
conditions given in the statement of Lemma 2. Each
vertex in S has k children and each vertex in B has
k − 1 children, therefore the size of X is k|S|+ (k −
1)|B|. Apply Lemma 2,

∆∗ ≥
⌈
|X|
|W |

⌉
=

⌈
k|S|+ (k − 1)|B|

|S|+ |B|

⌉
= k.

Therefore k = ∆∗. ut
The algorithm starts with an arbitrary spanning

tree T rooted at r and works in phases. Let k be the
degree of T . and S be the set of vertices of degree
k. In each phase we try to reduce the size of S by 1.
If successful, we move on to the next phase. We will
show later that if it is not possible to reduce the size

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006       312



of S, then there is a set B of degree k − 1 vertices in
T such that, the tree T along with the sets S and B
satisfies the conditions of Lemma 4 and hence T is an
optimal tree.

The algorithm tries to reduce the degree of ver-
tices with the maximum degree iteratively using the
following improvement scheme. Consider a vertex p
with the maximum degree k. Let v be one child of p.
we can decrease the degree of p by 1 if we can delete
the edge (v, p) and find an alternate path for v to reach
the root r. We call this as improvement step applied
to p. By Lemma 3, the new path from v to r does not
go through any vertex of Tv. Let x /∈ V (Tv) be the
nearest vertex to v in the new path from v to r. We
replace the edge (v, p) by the edge (v, x). Since x can
reach r in T and v can reach x after improvement, v
can also reach r. Vertices of Tv can reach v, they can
also reach r. Thus the subtree Tv of p transferred to
x. It can be verified that the above operation results
in another spanning tree since the number of edges is
still n − 1 and all vertices can still reach r. We will
perform such an improvement step only if, after the
improvement, the degree of the vertex whose degree
increased, is less than k. Note that the degree of p de-
creased by 1 and x increased by 1, the degree of the
other vertices do not change.

Definition 5 Let (v, x) /∈ E(T ) be an edge in G, the
parent of v is p, x /∈ V (Tv). If d(x) ≥ k − 1, we say
that x blocks p from (v, x). If x does not block p, then
(v, x) can be used to reduce the degree of p through
an improvement step. In such a case, we say p benefits
from (v, x). If p benefits from (v, x), we say x is the
obliging vertex of p.

Fig.1 illustrates an example of an improvement
step. In this example, the tree edges are shown by
thick lines and other edges of G are shown by dotted
lines. The degree of p is 4, and we see if v can find
an alternate path to r so that the edge (v, p) may be
deleted from T , thus decreasing the degree of p to 3.
The edge (v, b) is not chose because the degree of b is
already 3, and if we chose to add this edge, its degree
becomes 4. Decreasing the degree of p by increasing
the degree of b to 4 (the maximum degree) does not
make progress. In other words, b blocks p from (v, b).
The algorithm uses (v, x) to modify the spanning tree,
and x is the obliging vertex of p. the new spanning
tree is shown in Figure 1b. The degree of p has been
reduced to 3.

The following is a top-down view of our algo-
rithm. Let X be the set of all children of vertices in
Sk, where Sk is the set of all vertices with maximal
degree in T . If there are no edges from X to V − Sk,
we are done. Lemma 4 can be applied here and hence

r

p b

x

v

a) Spanning tree before improvement
r

p b

x

v

b) Spanning tree after improvement
Fig.1: an improvement applied to vertex p

T is an optimal spanning tree. Otherwise any edge
(x, y) from X to V −Sk benefit p(x) and can be used
to reduce the degree of p(x). If such an edge (x, y) is
not blocked by y, we make this improvement reduc-
ing the number of degree k vertices by 1 and continue.
Otherwise y blocks p(x) from (x, y). Suppose the de-
gree of y can be reduced by 1 through improvement
steps. Then y is made non-blocking and in this case,
we say that a sequence of improvements propagate to
p.

Fig.2 illustrates an example of a sequence of im-
provements which propagate to p. In this example, the
tree edges are shown by thick lines and other edges of
G are shown by dotted lines. As shown in Figure 2a,
y blocks p from (x, y), and we see if y can be made
non-blocking by reducing its degree by 1 through an
improvement step. There exists such an improvement
– replacing (x1, y) by (x1, y1) and y1 is non-blocking.
The algorithm use the two edges (x, y) and (x1, y1)
to modify the spanning tree; the new spanning tree is
shown in Figure 2b. The degree of p has been reduced
by 1.

The algorithm is implemented in a bottom-up
fashion as follows. At the beginning of each phase
of the algorithm, all vertices in Sk ∪ Sk−1 are marked
as bad. All other vertices are marked as good. Let X
be the set of children of vertices in Sk ∪ Sk−1 and Y
be V − (Sk ∪ Sk−1), the set of good vertices. Note
that X may contain vertices in Sk ∪Sk−1. If there are
no edges from X to Y of G, the algorithm stops. In
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r

p
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x1x

a) Spanning tree before improvement
r

p

y y1

x1x

b) Spanning tree after improvement
Fig.2: improvements which propagate to p

this case, Lemma 4 shows that the set of bad vertices
remaining is witness to the fact that k = ∆∗. Other-
wise let (x, y) be an edge from X to Y . We consider
the parent of x. If p = p(x) is a vertex of degree k,
we have identified a set of improvements which prop-
agate to p. Making these changes reduces the size of
Sk by 1. Otherwise if p is a vertex of k−1, we mark p
as good, add it to Y and remove all children of p from
X . The good vertex w is the obliging vertex of p. We
then go back to look for other edges from X to Y . In
all cases, we either find a way to reduce the degree of
some vertex in Sk or find a witness set allowing us to
apply Lemma 4. The following algorithm implements
the above ideas and output an optimal spanning tree.

Procedure PropagateImprovement(p)
1 If the degree of p is less than k, return;
2 Otherwise

a) Reduce the degree of p by 1 by transferring one
of subtrees of p to its obliging vertex x.

b) PropagateImprovement(x)
End Procedure

Algorithm DAG DMDST(G, r):
1 Find an arbitrary spanning tree T of G rooted at r.

Let k be its degree.
2 Mark vertices of degree k and k − 1 as bad and all

other vertices as good. Let X be the set of children
of bad vertices and Y be the set of good vertices.

3 While there is an edge (x, y) from X to Y of G do

a) Let p = p(x) be the parent of x in T and y be
the obliging vertex of p.

b) If the degree of p is k − 1, mark p as good,
add it to Y and remove all children of p from X .

c) Otherwise the degree of p is k
i) Run PropagateImprovement(p). Update k

if necessary;
ii) Go back to step 2.

End While
4 Output the final tree T and its degree k.
End

The algorithm proceeds in iterations. In each
iteration, one vertex are designated good. We there-
fore speak of a vertex being marked good at iteration
i. A vertex whose degree in T is less than k − 1 is
said to be good at iteration 0. Let Fi be the vertices
of T marked good at iteration i or less. Note that
Fi ⊂ Fi+1 for all i.

Lemma 6 Any vertex u marked good can be made
non-blocking by a sequence of improvements which
propagate to u.

Proof: The proof proceeds by induction on iteration
i. If u was marked good at iteration 0, it has degree
less than k − 1 in T , and is therefore non-blocking
by definition. Otherwise if u was marked good at it-
eration i > 0, it has an obliging vertex x ∈ Fi−1.
Since x was marked good at an iteration j ≤ i− 1, by
the inductive hypothesis, x can be made non-blocking
by applying improvements within Fj ⊂ Fi. We can
reduce the degree of u by transferring one of its sub-
trees to x, and make it non-blocking. This is done
within Fi. Hence our algorithm maintains only ver-
tices which can be made non-blocking. Note that any
update needed to make a vertex marked good at itera-
tion i non-blocking is within Fi. ut
Lemma 7 When the algorithm stops, k = ∆∗.

Proof: Let S be Sk and B be the bad vertices of
degree k − 1. Let X be the set of all the children of
vertices in S ∪ B. Note that the algorithm stops only
when there are no edges from X to V−(S∪B). Hence
the tree T along with these sets S, B and X satisfy the
conditions of Lemma 4 and we get the desired result.
ut

4 Analysis of the running time of the
algorithm

As mentioned above, the algorithm works in phases.
Let S be the set of vertices of degree k. In each phase

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006       314



we try to reduce the size of S by 1. As the size of S
reduces by 1 in each phase except the last one, there
are at most O(n/k) phases when the maximal degree
is k. The sum of the harmonic series corresponding to
reducing values of k is,

2∑

k=n−1

⌊n

k

⌋
= O(nlogn).

Hence there are at most O(nlogn) phases. Each phase
can be implemented in O(m) time. Thus we have the
following theorem.

Theorem 8 There is an O(mnlogn)-time exact algo-
rithm for the minimum degree spanning tree problem
on directed acyclic graphs, where m is the number of
edges and n is the number of vertices.

5 Conclusion
We have presented an exact algorithm for the directed
minimum degree spanning tree problem on directed
acyclic graphs. We introduced a new notion of wit-
ness sets that works in directed graphs. Designing
algorithms for the Steiner version of DAG DMDST
problem is also one of our research goals. Fig.3 il-
lustrates an example that shows our algorithm can’t
resolve the Steiner version of DAG DMDST problem
yet. In this example, there is a vertex p of degree k.
Its children are c1, . . . , ck. Each of these k children
have an edge into vertex s, which is not in the current
Steiner tree. And s has an edge into p. It can be ver-
ified that there is no improvement possible for vertex
p. But, the degree of p can be reduced to bk/2c + 1
by connecting bk/2c of p’s children through s. In fact
if the graph has a number of other extra nodes similar
to s, the degree of p can be reduced even to 2. This
example shows that our algorithm does not guarantee
any performance bound on the degree of the tree for
the Steiner case. The reason that we were unable to
apply Theorem 4 is that, the children of bad vertices
can be connected to an extra vertex which is not in the
current Steiner tree.

p s

c1 ck

Fig.3: A Steiner Example

Finally, are there algorithms that work in
weighted, directed acyclic graphs?
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[4] M. Fürer and B. Raghavachari, Approximating
the minimum degree spanning tree to within one
from the optimal degree, In: Proc. of 3rd ACM-
SIAM Symp. On Disc. Algorithms (SODA), New
York: ACM Press, 1992, pp. 317–324.

[5] M. Fürer and B. Raghavachari, Approximating
the minimum-degree Steiner tree to within one
of optimal, J. Algorithms, 1994, 17: 409–423.

[6] B. Gavish, Topological design of centralized
computer networks - formulations and algo-
rithms, Networks, 1982, 12: 355–377.

[7] J. Könemann and R. Ravi, A matter of degree:
improved approximation algorithms for degree-
bounded minimum spanning trees, In: Proc.
of 32nd annual ACM Symposium on Theory
of Computing(STOC), New York: ACM Press,
2000, pp. 537–546.

[8] E. L. Lawler, Combinatorial optimization: net-
works and matroids, Holt, Rinehart and Win-
ston. New York, 1976.

[9] B. Raghavachari, Algorithms for finding low de-
gree structures, In: Approximation algorithms,
Boston: PWS Publisher Inc., 1996, pp. 266–295.

[10] B. Raghavachari, The directed minimum-degree
spanning tree problem, In: Proceedings of the
21st Conference on Foundations of Software
Technology and Theoretical Computer Science.
London: Springer –verlag, 2001, pp. 232–243.

[11] R. Ravi, Rapid rumor ramification: approximat-
ing the minimum broadcast time, In: Proc of
35th Annual IEEE Symposium on Foundations
of Computer Science(FOCS), New York: IEEE
Computer Society Press, 1994, pp. 202–213.

[12] R. Ravi, M. V. Marathe, S. S. Ravi,
D. J. Rosenkrantz, and H. B. III, Many birds
with one stone: multi-objective approximation
algrorithms, In: Proc. of 25th Annual ACM

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006       315



Symp. On the Theory of Computing(STOC),
New York: ACM Press, 1993, 438–447.

[13] R. Ravi, B. Raghavachari and P. Klein, Approx-
imation through local optimality: designing net-
works with small degree, In: Proc. of 12th Conf.
on Foundations of Software Tech. and Theoret.
Comp. Sci. (FSTTCS), 1992, pp. 279–290.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006       316


