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Abstract: - In recent years, heuristic algorithms are widely used to solve very large and complicated 

optimization problems. In this paper, the structure of Tabu Search (TS) - one of the most efficient 

neighborhood search algorithms - is fist explained. Then the effect of several neighborhood generation and 

move selection mechanisms on its performance is investigated. To reach this goal, a set of constrained 

Traveling Salesman Problems (TSP) is solved by five different neighborhoods. The performance of TS 

algorithm is then evaluated and compared from the view point of convergence speed and solutions qualities.  
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1   Introduction 
Nowadays, modern industries are faced with 

different issues, such as severe competition, rapid 

changes, energy and resource limitations, 

environmental concerns and so on. Because of these 

challenges, process optimization - that in necessary 

for efficient usage of resources and increasing the 

operating efficiency- has attracted a lot of attention 

by researchers. However, real sized optimization 

problems are mostly large and complicated. 

Therefore, solving such problems by traditional 

deterministic methods is very time consuming and 

inefficient. On the other hand, simplifying 

complicated and large problems usually makes their 

results inaccurate and unsuitable for real life 

situations. Heuristic algorithms such as Tabu Search 

and Genetic Algorithm, with high calculation speed 

and good (not necessarily optimum) solution quality, 

seem to be good alternatives for deterministic 

optimization procedures. One of the important 

benefits of these algorithms is their good adoption to 

broad band of optimization problems. These 

methods are working within feasible solutions space 

and are not dependent on the problem structure. 

Thus, as long as the decision variables are discrete 

or they can be defined as discrete variables, 

complicated problems can be coded and solved by 

these methods. This is done by converting each 

solution into a numerical string of decision 

variables. However, even after adjusting the 

algorithm on problem structure, selected values for 

parameters have a great effect on calculation speed 

and the quality of final solutions. 

 In some research papers, the performances of 

some neighborhood search heuristics are compared 

using different standard problems such as TSPs. 

Nevertheless, such comparisons may not be fair and 

exact, since with proper search parameter settings 

most techniques may provide good answers. In other 

words, the performance of any algorithm is affected 

by the way that its parameters have been tuned. 

 This paper has a different approach. Our aim is to 

evaluate the effects of various neighborhood 

generation mechanisms and move selections policies 

on the performance of Tabu Search (TS). To achieve 

this goal, first different neighborhood generation 

mechanisms and move selection policies in TS are 

presented. Then, using a set of TSP numerical 

examples, their effects on algorithm performance is 

investigated. Finally, search results are compared 

and discussed in terms of computational speed and 

solutions qualities. 

 

 

2   Tabu Search 
Since the mid 80s, with the advent in computer 

calculation capabilities, many neighborhood search 

algorithms have been proposed to solve large and 

complicated optimization problems. Generally, most 

of these heuristics are inspired by the natural and 

physical phenomena. To some extend, they are a 

simulation of natural phenomenon by mathematical 

functions. These methods do not guarantee optimum 

solutions but by searching the feasible solution 

space try to find an optimum or near optimum 

solution for the problem in hand. That is why they 

are called "neighborhood search methods". Genetic 
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Algorithm (GA), Simulated Annealing (SA) and 

Tabu Search (TS) are some well known such 

algorithms. 

Tabu Search, first proposed by Glover [1], is an 

iterative neighborhood search that step by step, 

searches feasible solution space to find the optimum 

or near optimum solution. In this method, search 

begins from a feasible solution and for each move, 

the neighborhood of current solution, is generated 

and evaluated. Then a new move is made to the best 

allowable (non-tabu) answer in the neighborhood. 

The stepwise transition from one solution to another 

allows the search to reach an optimal or a close-to-

optimal solution after a number of moves. However, 

a single move, by itself, may not necessarily 

improve the current value of objective function. This 

distinguishes tabu search from other traditional 

techniques such as hill climbing that require each 

move to be an improving step. Throughout the 

search, the best solution found so far, Cbest, and its 

corresponding sequence, Sbest, will be recorded and 

updated. The important parameters in TS are as 

follows: 

Starting Point: Search begins from a feasible 

solution such as S. A feasible solution is any set of 

values for decision variables that satisfies problem 

specifications and constraints.  

Neighborhood: For a given solution S, the 

neighborhood N(S) is a set of feasible solution 

generated with the minimum changes in current 

solution. Pairwise interchange is the most popular 

mechanism for neighborhood generation. In this 

mechanism, each neighbor is generated by changing 

the position of two members in the current solution 

string. 

Move: A move is the transition from the best 

solution, s
**
, in the previous neighborhood to the 

best permissible solution, s
*
, that has the best cost 

function value, in the current neighborhood. Such a 

move may or may not be an improving one. 

Tabu List: One of the important features of tabu 

search is its ability to avoid being trapped in local 

optima by constructing a list of tabu moves. Tabu 

list, T_list, includes a certain number (T_size) of 

previous moves which are not allowed at the current 

iteration. Once a move from s
**
 to s

*
 is made, s

**
 is 

added to the top of tabu list and the oldest member 

of the list is removed. Thus, returning back to this 

s
**
 is forbidden for the next T_size iterations. This 

can exclude, to some extent, those moves which lead 

to possible cycling. The size of tabu list can affect 

the search performance. Although a longer list may 

prevent cycling, it requires more scanning and may 

limit the search domain. The best tabu list size 

appears to be problem dependent and there is no 

fixed rule to follow in determining tabu-list size so 

far.  

Termination Criteria: The last element necessary 

for tabu search is termination criterion. In general, 

search can be stopped when a certain number of 

iterations, Mmax, is completed, after a pre-defined 

of computational time, Tmax, is reached, or when no 

improvement can be obtained in a specific number 

of moves.  

A full explanation of this technique and some of its 

applications can be found in [2,3,4]. 

 

 

3  Neighborhood Generation and  

 Move Selection Mechanisms 
Generally, parameters setting have a considerable 

impact on in heuristic algorithms performances. In 

many cases, it takes many trial runs to find suitable 

values for search parameters. This, in turn, makes 

optimization process a time consuming and 

demanding task. Fortunately, in comparison to the 

similar methods, TS is a robust algorithm with few 

parameters.  

Neighborhood generation mechanism and move 

selection policy are the most important parameters 

that affect TS performance in terms of solution 

quality and computational time. Conventionally, a 

neighborhood, N(S), is defined as a set of solutions 

that can be obtained by performing one transition in 

the current solution. In the related literature, 

pairwise interchange is the most widely used 

technique to make such a transition. In this method, 

a solution is generated by switching the members 

(cities in our case) in positions i and j. The complete 

pairwise interchanges of a J-city problem leads to 

[N(s)] = J(J - 1)/2 neighbors. Extraction and 

reinsertion is another technique for transition. With 

this method, the neighborhood contains all solutions 

obtained by extracting the city in position i and 

inserting it right after (or before) the city in position 

j. The neighborhood size for the extraction and 

reinsertion approach is [N(s)] = J( J - 1)2 which is 

almost doubled as compared to pairwise 

interchange. Thus this mechanism appears to be 

more computationally demanding. Furthermore, as 

indicated by Adenso-Diaz [5], none of these two 

techniques seems to outperform the other in terms of 

solution quality for a given run time. Therefore, in 

this paper only the pairwise interchange approach is 

used as the basic neighborhood generation 

mechanism.  

The next step in tabu search is to specify a move 

strategy. The classic approach is to evaluate the 

entire neighborhood and choose the best allowable 
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move. However, the required computational time 

could be unacceptably long when the problem size is 

large. To overcome this problem, partial search 

schemes have been proposed recently [6].  

In following, five different neighborhood generation 

and move selection mechanisms are discussed. 

These policies are then evaluated using a numerical 

example of 100 cities.  

Pairwise Interchange and evaluation of all 

neighborhood (PI): This is the most common 

police in which all neighbors of the current solution 

are generated and evaluated at each iteration. For a 

problem with J variables (cities), the transposition 

range (the range of interchange) would be from 1 

to )1( −J . The neighborhood size for PI policy is 

2/)1()( −= JJsN . This number of solutions 

should be generated and evaluated for each move. 

This policy guarantees complete neighborhood 

search and results in a better solution quality. 

Nevertheless, as problem size grows, generation and 

evaluation of all neighbors can be very time 

consuming and would cause sluggish convergence. 

To increase the search speed, partial neighborhood 

can be generated and evaluated. 

Partial Neighborhood (PN): The range of 

interchange in PN is from 1 to m (m < (J-1)).  In 

other word, neighborhood is generated by 

interchanging the position of each city with a limited 

number of next cities. Indeed, this will lead to a 

smaller neighborhood and will increase search 

speed. A problem with J city has 

∑
=

−+−=
m

i

imJmsN
1

)1().()(  number of neighbors. 

Random Neighborhood (RN): In this method, m 

cities from J-1 possible cities are selected randomly 

and interchange will be done on them. This 

mechanism is similar to PN in terms of 

neighborhood size, but has random nature. 

Adjacent Pairwise Interchange (API): This is a 

special case of PN method, in which m has been set 

to 1; i.e. transposition range is only 1. This 

mechanism generates the smallest neighborhood 

size. The number of neighbors in each move is 

)1()( −= JsN
.  

First Improving Neighborhood (FIN): The 

mechanism of neighborhood generation is the same 

as PI, but move would be made to the first neighbor 

that improves objective function. In FIN policy, 

neighbors for current solution are generated one at 

the time and once an improving neighbor is found 

the process of neighborhood generation will stop. If 

no improving neighbor is found, the entire 

neighborhood is generated and move is made to the 

best one; just like PI. Therefore, the size of 

neighborhood is unpredictable and can vary from 1 

to 2/)1()( −= JJsN . 

  

 

4   Tabu Search  for TSP 
Traveling Salesman Problem is a classical 

optimization problem in which a salesperson has to 

visit all interconnected cities only once in such way 

that the total traveling distance is minimized [7]. In 

constrained TSP, there is no direct connection 

between some cities. This is a more practical version 

of TSP that can be implemented to many 

optimization problems [8]; such as job sequencing 

[2], facility location [9] and vehicle routing [10]. It 

is, therefore, considered in this research as the 

benchmark problem. A schematic example of 

constrained TSP is shown in Figure 1 in which all 5 

nodes are interconnected but there is no direct 

connection between nodes C and D. Each solution 

(tour) is represented by a sequence of cities such as 

A,B,C,E,D. For a problem of size J, there is a total 

of J! possible sequences or tours. The cost function 

is the sum of total crossed distances in a given tour. 

It should be noted that in constrained TSP some 

tours may be infeasible due to the absence of direct 

connection between two consecutive cities (e.g. 

A,B,C,D,E,).  

 

 
Fig 1.  Schematic representation of constrained TSP 

 

To solve TSP by Tabu Search, each solution is 

represented by a string that shows the sequence of 

cities in a unique way. The search starts with a 

feasible tour or sequence, say S. Then the 

neighborhood N(S), is generated by performing one 

transition in the current solution; i.e. pairwise 

interchange. Each neighbor in N(s) has its associated 

objective function value or total distance G(s), and 

the one with the smallest G(s) is defined as the best 

neighbor, denoted by s
*
 . A move is then made from 

s
**
, the best sequence of the immediate previous 

neighborhood, to s
*
, provided that s

*
 is not in the 
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current tabu list. The best solution found so far, and 

its corresponding sequence are then updated if 

necessary and kept in memory. The sequence s
*
 is 

then stacked into the tabu list of pre-defined size and 

the oldest sequence is removed from the list. The 

search is stopped when termination criterion is met.  

The size of neighborhood and the way that the next 

move is selected has a great effect on search 

performance. This becomes more evidence when the 

problem size is large.  

 

 

5  Numerical Example and Results 
In order to analyze different neighborhood 

generation and move selection mechanisms, the TS 

algorithm has been applied to a set of TSP problems 

with 100 cities (variables). In TSP problem, the 

traveling salesperson must visit all cities with 

minimum traveling distance. To make the 

optimization problem more realistic, we use 

constrained problem in which there are no direct 

connections among some cities. The algorithm has 

been coded on MATLAB R6.5 software. For more 

accurate and fair comparison of results, in all runs 

the arrangement of cities, the termination criterion 

and the starting points are kept the same. 

 Computational results and convergence curves for 

a sample problem are presented in Table 1 and 

Figure 2 respectively. 

 
Table 1. Results of TSP example with 100 cities 

 

Neighborhood 

Mechanism 

Initial 

 distance

Final 

 distance 

Objective 

 improvement

 (%) 

Neighborhood

 size  

)(sN
 

PI 16160 164.5 4950 

RN 16120 165.1 2535 

PN 16980 151.7 2535 

API 25550 67.3 99 

FIN 16020 166.8 ~ 

DN  

42743 

16160 164.5 ~ 

 

 The results in Table 1 show considerable objective 

function improvements for all policies during 30 

seconds of search time. The least cost function 

(distance) improvement is more than 67% while 

there is about 167% reduction for the best scenario. 

Nevertheless, there is a big difference in terms of 

search performance under different policies. This 

shows the importance of neighborhood generation 

and move selection policies on the search 

effectiveness. 

 
Fig. 2  Convergence curves for TSP problem   

 

 As shown in Figure 2, all mechanisms (excluding 

API) converge to the same answer. Although API 

neighborhood demonstrates a fast convergence rate 

at the beginning, it performs inferior in terms of 

solution quality. The fast convergence rate of API is 

a result of its small neighborhood size; whereas the 

same feature probably causes it being trapped in 

local optima. 

 Among four other mechanisms, FIN method 

seems to be the best as it demonstrates both superior 

convergence rate and solution quality. Its dynamic 

neighborhood size allows the algorithm to move fast 

towards promising parts of solution space. It is also 

capable of doing a complete neighborhood search at 

the final stages where possible optimum is near by. 

This reduces the computational time at the 

beginning of the search while improves solution 

quality at final iterations. 

 Other three mechanisms have somehow similar 

patterns. Relative dullness of PI mechanism is 

because of its neighborhood size and move selection 

policy that requires generating and evaluation of all 

neighbor solution for each move. On the other hand, 

evaluating all neighbors will increase the probability 

of finding an optimum solution. Although in the 

example problem the neighborhood sizes of RN and 

PN are the same, RN clearly outperforms PN. The 

random nature of search, which extends the search 

area, in RN is the main reason for this advantage. 

This is somehow similar to what happens in 

Simulated Annealing, another powerful probabilistic 

neighborhood search. 
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6   Conclusion 
Tabu Search algorithm is an efficient optimization 

techniques. With its few search parameters, it is a 

robust algorithm with little required tuning. In this 

research, the effects of different neighborhood 

generation and evaluation mechanisms on search 

efficiency were analyzed. Computational results 

have shown that in the longer run times, most 

neighborhood mechanisms result in similar 

solutions. However, the rate of improvements 

largely depends on the type of neighborhood. This 

becomes more evident for shorter computational 

times and for larger problem sizes. It seems dynamic 

neighborhoods such as FIN lead to better solutions 

in shorter search times. This is mostly because of the 

part of neighborhood to be evaluated varies in 

different phases of the search. In the beginning, 

smaller neighborhood is usually evaluated allowing 

the search to expand search domain. After several 

iterations when the algorithm converges to 

promising part of solution space, bigger 

neighborhoods are generated and evaluated to 

increase solution quality. Therefore, it may be 

beneficial to use different neighborhood 

mechanisms at different stages of the search.  

 Although we can not extend the results find here 

to all optimization problems, it is clearly shown that 

the performance of Tabu Search, and any other 

neighborhood search, is greatly affected by its 

neighborhood generation and move selection 

mechanisms. This could be a promising area for 

future research works. 
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