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Abstract: - The purpose of this paper is to use the H∞ design technique in order to produce an efficient 
controller for a real application, which concerns the design of a control scheme for an air blown gasification 
cycle unit plant (gasifier) for the production of environmentally clean energy. The resulting controller is 
designed for the 100% load operating point of the gasifier but at it will be shown that works equally well for 
the  50% load operating point. 
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1   Introduction. 

The purpose of this paper is the development of 
a dynamic simulation model and a controller using 
the H∞ method for the plant (gasifier).  This case 
study is based upon the data provided for the 100% 
load operating point of the gasifier.  However the 
resulting controller is going to be tested on the 50% 
load operating point in order to show that its 
performance is satisfactory in both cases.  The 
crucial aspect of the gasifier is that it is numerically 
ill-conditioned.  This means that commercial 
software packages have a strong chance of failing to 
provide an accurate solution for the problem because 
their algorithms cannot handle such numerics. 
 
 
2   Problem Specification. 
     Schematically the gasifier unit is described in 
Figure 1.  A brief description of the gasifier is that it 
is a non-linear, truly multivariable system, having 
five inputs (coal, limestone, air, steam and char 
extraction) and four outputs (pressure, temperature, 
bed mass and gas quality) with a high degree of 
cross coupling between them. 
The control inputs are: 
WCHR char extraction flow (kg/s) 
WAIR air mass flow (kg/s) 
WCOL coal flow (kg/s) 
WSTM  steam mass flow (kg/s) 
WLS limestone mass flow (kg/s) 
 The disturbance input is  
PSINK  sink pressure (N/m^2) (This represents the 
pressure upstream of the gas turbine that would vary 

according to the 
position of the gas 
turbine fuel valve.) 

The outputs to be 
controlled are: 
CVGAS fuel gas 
calorific value (J/Kg), 
MASS bed mass (Kg), 
PGAS fuel gas 
pressure (N/m2), 
TGAS fuel gas 
temperature (K). 

Fig. 1: The Gasifier              
Note that: 
1)  The output vectors in the state – space model 

are ordered as given above.   
2) Limestone absorbs sulphur in the coal so 

WLS should be at least set to a fixed ratio of 
WCOL.  Nominally this should be  to 1:10 
limestone to coal.  This leaves effectively 4 degrees 
of freedmome for the control design. 

3) The data provided for the linear models 
provided (100%, 50%, 0% load) are completely 
open loop meaning that the bedmass controller is 
added solely for the validation of the simulation.   

4) The order of the system under consideration 
is 25 and no model reduction has been applied to the 
data provided. 

The proposed controller should be able to 
regulate the outputs bearing in mind that the input 
and output limits must not be exceeded. 

For the output limits the following applies: 
1) The CV fluctuation should be minimized, but 

must always be less than ±10 KJ/Kg 

MASS 
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2) The pressure fluctuation should be 
minimized, but must always be less than ± 0.1 bar. 

3) The bed mass should fluctuate by less than 
5% of the nominal 

4) Temperature fluctuation should kept to a 
minimum, but must always be less than ± 1 C. [12] 

 
Table 1:  Input limits 

      Max 
    (Kg/s) 

Min 
(Kg/s) 

   Rate 
  (Kg/s2) 

  WCOL        10         0      0.2 
  WAIR          0         0       1.0 
  WSTM           6         0      1.0 
  WCHR           3.5         0      0.2 

 
 

2.1 H∞ Optimal Control. 
There are many process control problems where 
significant uncertainties exist in the system models, 
which therefore require robust control designs.  
Robust control design procedures enable good 
performance to be maintained even though 
significant modelling errors exist in the system 
description. [1], [2]. 

If a system has disturbance rejection robustness, 
the output will not be unduly influenced by the 
presence of disturbances.  However, stability 
robustness is the most important requirement, since 
the final closed loop design should be stable despite 
modelling errors. 

 
 
 
 
 
 
 
 

Fig.2: Standard representation of inaccurately 
known plant under feedback control 

The uncertainty inherent in a plant model can be 
obtained by the representation of Figure 2, where 
P(s) is the plant to be controlled, K(s) is the 
designed controller and ∆(s) is the perturbation.  It 
should be noted that the external inputs “w” is a 
vector of all the signals entering the system, and the 
“error” (z) is a vector of all the signals required to 
characterise the behaviour of the closed loop system. 
Both of these vectors may contain elements, which 
are abstract in the sense that they may be defined 
mathematically, but do not represent signals that 
actually exist at any point in the system. u is the 
vector of control signals, and y is the vector of 
measured outputs. 

However, Figure 2 can be simplified as in Figure 
3 if the perturbation ∆(s) is not shown. 

P(s) is derived from the nominal plant model.  
However, it may also include weighting functions, 
which depend on the design problem that is being 
solved. Suppose that P(s) is partitioned as 









=

(s)P(s)P
(s)P(s)P

P(s)
1221

1211                                        (1) 

so that  
 z  =   P11w  +  P12u,                                          (2) 
y  =   P21w +  P22u.                                                  (3) 

Then, u and y can be eliminated using u=Ky, to 
obtain  
z = [ P11 + P12K(I - P22K)-1 P21]w.                           (4) 
 
For convenience, expression (4) can be written as 
follows:  z = F1(P,K)w.  

By suitably defining w and z (or, equivalently, 
P), it is possible to put a number of practical design 
problems into the form 
 

minimise ∞K)(P,F1  
 
where the minimisation is over all realisable 
controllers K(s) that stabilise the closed loop system, 
and 

∞
.  is defined as   G ∞ = 

ω
sup σ (G(jω)). 

This is known as the H∞ - optimisation problem.  
 

 
 
 
 
 

Fig.3: Representation of inaccurately known 
plant under feedback control without perturbation ∆.  

 
 

2.2 Solution of the H∞ problem. 
2.2.1   Equivalence to the model matching 
problem. 
It was shown earlier that the general H∞ could be 
formulated as minimize K)(P,F1 ∞  over the 
stabilising compensator K.  

Combining P and J of Figure 4 into a transfer 
function T and assuming that P22 = G, the following 
conclusions can be deducted:   

 
z = F1(P,K)w = F1(T,Q)w =   
[T11 + T12Q(I – T22Q)-1T21]w.                                 (5) 

 
Here, T22 = 0  (for the scope of this research) so 

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006       238



the previous expression can be simplified to   
 

z = [T11 + T12QT21]w.                                             (6) 
 
So it can be now said that all that is needed is to                                                                                                                  
 

∞∞∈ + 2111Q TTmin                                             (7) 
 
 
 
 
 
 
 
 
 
 
 

Fig.4: Another standard representation of 
inaccurately known plant under feedback control 

 
This is sometimes known as the model - 

matching problem because to solve it we need to 
choose Q such that T12QT21 “matches” the model –
T11 as well as possible [3], [4]. 

 
 

2.2.2   Equivalence to Hankel Approximation 
From now on X*(s) will be used to denote XT(-s). 
Moreover, the argument (s) will be dropped for 
convenience reasons.  Assuming that the following 
relationships are valid  
 
T12 T*

12 = I  and  T*
21 T21 = I                                 (8) 

it is easy to show that, if X and Y are all-pass (or 
inner) and σ(.) denotes any singular value of (.), 
then σ(XAY) = σ(A), and that, for any σ(A*) = 
σ(A). Hence it can be said that 
 

=+=+ ∞∞ 21
*
2111

*
1212211211 Q)TTTT(TQTTT  

 ∞∞ +=+ QQ *
12

*
1121

*
2111

*
12 TTTTTT                (9) 

 
Note: 
All pass transfer function: G(s) = Go(s)*A(s), A(s) = 
(s-a)/(s+a), where A(s) =1 while its phase 
decreases. 
 
Since Q ∈ Η∞ and Tij ∈ Η∞, Q* has only unstable 
poles while T21T*

11T12 potentially has both stable and 
unstable poles. It can be shown, by a rather 
complicated analysis, that T21T*

11T12 in fact has only 
stable poles [5]. 

 
If R is defined likewise as  
 
R = T21T*

11T12                                                       (10) 
then  

 

min min
H∞ ∞∈ ∈

+ = +11 12 21
Q Q H

T T QT R Q                   (11) 

 
which converts the model – matching problem into 
the problem of approximating a stable transfer 
function R by an unstable one (-Q*).  This is known 
as the Hankel approximation problem, or the Nehari 
extension problem. [6]  
 
3   Problem Solution. 

In order to understand how the gasifier system 
should be approached the following notes could be 
useful: 

1)  The system has to examined in terms of 
controllability, observability and stability 

2)  Any possible model order reduction should 
be carried out at the beginning of the design.  The 
resulting reduced system should be check again as 
for (1) 

3)  The selection of the weights is very 
important in H∞.  The better the weight selection the 
better the produced results.   

 
  
 
 

 
 
 
 
 
 
 
 

Fig.5: H∞ Design:  Loss function for one degree 
of freedom 

Wa is the weight that minimizes the actuator 
variations, 
Ws is the weight that minimizes the noise rejection. 
Wt is the weight that minimizes the error in the gain 
from the reference to input. 

For the gasifier system only Wt and Ws are used 
and their value is presented at the next section.  The 
loss function for the H∞ approach is given by: 
where  
S(s) = (I + GK)-1 is the noise rejection and 
sensitivity function 
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R(s) = (I + GK)-1 K the gain from output noise to 
actuator output 
T(s) = (I + GK)-1 GK is the complementary 
sensitivity function [10]. 
 

( ) * ( )
( ) * ( )
( ) * ( )

Ws s S s
Wa s R s
Wt s T s

 
 
 
  

                                                     (12) 

 
If up to this stage everything is calculated 

correctly, then the H∞ approach should provide an 
appropriate controller for the system. 

4)  Matlab provides efficient routines for both 
model order reduction and the H∞ controller 
calculation [7], [8], [9]. 

 
 

4   Results. 
Step 1: The system is firstly reduced to a 

15th order model and then made square 4x4, (the 
third and the fifth input were combined and the first 
two outputs were interchanged so as to control the 
bed mass loop first, by manipulating the char 
offtake) [5].  

Step 2: A simple input and output scaling 
was applied to the system of the form 

[ ]( )Pre = diagonal -1 1 1 1  and 

[ ]( )Post=diagonal 0.001 0.00001 0.001 0.1  
Step 3: Apply normalisation at the 

frequency point of 0.001 rad/sec and alignment at 
the frequency point of 0.0001 rad/sec.  The 
normalisation routine has produced again non 
diagonal matrices, so a change in the outputs has 
happened again.  The first output controls Pressure, 
the second loop controls Fuel Gas, the third loop 
controls Temperature, and the last loop controls the 
Bed Mass [10]. 

Step 4: Weights had now to be selected in 
order to define the appropriate functions to be 
minimised.  The new weights are: 
 

input
0.001 0.0001 0.00001W (4x4)=diagonal 1

s+0.001 s+0.0003 s+0.000001
 
  

 and 
-4 -5 -6

output
s+1*10 s+1*10 s+1*10W (4x4)=diagonal 1

s+1 s+1 s+0.01
 
 
 

      Step 5: The H∞ controller was now 
calculated and applied directly onto the full order 
gasifier model.  The details of the resulting 
controller were checked.  This is because with the 
H∞ method an unstable controller may be produced 

but the closed loop stability of the resulting system 
is guaranteed. 

However, if a controller is unstable (a not 
impossible occurance since non minimum phase 
zeroes in the plant are present), it would not be 
possible to apply this to the plant because it can 
not start working in a stable way.  So, the 
resulting shaped controller has 21 states and its 
poles were all stable as Table 2 indicates  

 
Table 2:  H∞ controller poles 

-3.0463e+02 

-1.0070e+00 + 1.1807e-01i 

-1.0070e+00 - 1.1807e-01i 

-1.6952e-01 + 1.6738e-01i 

-1.6952e-01 - 1.6738e-01i 

-1.6385e-01 

-1.0642e-01 

-5.6740e-02 

-4.7260e-02 

-2.9608e-02 

 

-1.2223e-02 

-3.3385e-03 

-1.0000e-03 

-7.9077e-04 + 4.0754e-04I 

-7.9077e-04 - 4.0754e-04I 

-6.8506e-04 + 1.9995e-04I 

-6.8506e-04 - 1.9995e-04I 

-1.0000e-06 

-3.2543e-04 

-1.9450e-04 

              -3.0000e-04 
   
 
 
 
 
 
 
 
 

Fig.9: Resulting Closed Loop System 
 

Fig.6:  Resulting Closed Loop System 
Figures 7 indicates that the results for the 100% 

load case are satisfactory.  Once again the H∞ 
method has produced an effective controller.  The 
system is diagonal dominant and all the diagonal 
elements reach their steady state values inside the 
time limit.  Only the fourth output seems to be quite 
slow compared to the other two, but it also reaches 
its steady state value inside the specifications.  
Moreover, as is obvious the interaction is very much 
reduced and even the interaction in the elements 
(4,1) and (4,2) reach the zero value very short after 2 
hours limit.   

This may simply be a matter of just a bit of more 
fine tuning of the weighting functions.  However, 
this could be a suggestion for further work. 

Figure 8  shows the H∞ controller behaviour for 
the 50% load case.  Note that the controller and 
weights used for the 50% load were exactly the 
same as the ones in Step 4 for the 100% load case.  
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It is obvious that the produced controller works 
equally well for both cases. 

Finally it should be noted that H∞ controller was 
produced for the full gasifier system (25th order) 
This may not be considered as an advantage but it 
shows the effectiveness of this approach.  At the 
time that this research was completed it was not 
known of any other method capable of handling this 
system in this way, especially when applying the 
calculated controllers to the full order gasifier 
model. 
 
5   Conclusions. 
The results show that the task of this paper was 
successfully tackled.  However there are a few 
points that should be pointed out.  First of all the 
singular values of the system must be examined, 
because they indicate the numerical condition 
number of the system.  In our case they were too 
small, so some sort of scaling had to be applied.   

Because the gasifier’s order was too high a 
model order reduction was applied.  Amongst the 
various ways of doing for very complicated systems 
like this one it might be better to use commercial 
software, such as MatLab that provide efficient 
model order reduction algorithms.  It should be kept 
in mind, however, not to push the system order too 
low.  This is because by producing a very low order 
model some of the significant dynamics of the 
system can be lost, so the resulting controller would 
work well for the reduced system but it would be 
insufficient for the full order model. 

Finally the selection of the weights is another 
important aspect.  These should be selected as high 
pass and low pass filters intersecting at a desired 
bandwidth frequency.  The correct selection of the 
weights means that all the H∞ design criteria will be 
met, and so the controller will be reliably calculated. 

Although an acceptable solution for this problem 
was achieved there are still some possibilities for 
improvement. The system can be considered 
diagonal dominant and the elements of the main 
diagonal reach their steady state values almost inside 
the specified time limit.  Some further fine tuning 
could be applied to the existing controller, in order 
to eliminate the existing interaction  
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Fig.7:  H∞ controller applied to the full order gasifier.  100% load case 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.7:  H∞ controller, calculated for the 100% load case, applied to the full order gasifier at 50% load case. 
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