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Abstract:This paper presents an algorithm for automatic extraction of the optic disc in retinal digital images. The
developed system consists of two main parts. Firstly, a clustering algorithm is used to select the regions which
contain the pixels with the highest gray levels. A correlation filter is applied to these regions to compute the
approximate center of the optic disc. Then, in order to extract the optic disc,a deformable model which works in
three stages is used. The localization of the region of interest is successful in 98.5% of the cases and the optic disc
is correctly extracted in 93% of the cases.
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1 Introduction

The retinal fundus photographs are widely used in the
diagnosis of eye diseases. Processing automatically a
large number of retinal images can help ophthalmol-
ogists to increase the efficiency in medical environ-
ment.

The optic disc is the brightest area in images that
have not large areas of exudates and it is a slightly oval
disc. It is the entrance region of vessels and its detec-
tion is very important since it works as a landmark for
the other features in the retinal image.

There are many previous works on optic disc lo-
calization. Lalonde et al. [1] extract the optic disc us-
ing Hausdorff–based template matching and pyrami-
dal decomposition. It is neither sufficiently sensitive
nor specific enough for clinical application.

On the other hand, strategies based on active con-
tours [2–4] are used to detect the optic disc boundary
in retinal images. These techniques are very robust
against noise but their main disadvantage is their high
computational cost.

In this paper, a methodology to extract the optic
disc is proposed. Firstly, a clustering algorithm is used
to compute the regions with highest gray level pixels.
A correlation filter is applied to these regions in order
to compute the approximate center of the optic disc.
Once the optic disc position is located, a deformable
model is used to obtain an accurate segmentation of its

boundary. This last stage follows the work of Lowell
et al. [3], but with our own implementation.

The chosen deformable model is composed by a
global model and a local model. The global model
fits approximately to the boundary of the optic disc.
The local deformable model can get a more accurate
fit to the characteristics of the boundary, keeping at
the time the shape of the model when the boundary
does not exist or it is difficult to get. Optic disc seg-
mentation is performed in three stages: in the first two
stages the global model is fitted to the optic disc. In
the third stage, starting from the result of the previ-
ous stages, the local model is accurately fitted to the
particularities of the boundary of the optic disc.

This work is organized as follows: first section
introduces the problem and several approaches which
can be found in literature to solve the problem of op-
tic disc segmentation. Second section describes the
optic disc localization algorithm, which allows to find
the precise location of the optic disc head. Third sec-
tion describes the segmentation algorithm, showing
the three stages the deformable model used in the seg-
mentation step performs in. Fourth section shows the
results obtained by the combination of both previous
algorithms, and finally in last section conclusions and
future work are discussed.
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2 Optic disc localization
The first stage of the process consists of locating the
region where the optic disc is located. A clustering
algorithm is used to compute the regions with highest
gray level pixels, among which will be the one con-
taining the optic disc. Later, a correlation filter is ap-
plied to these regions in order to discard the regions
where the optic disc is not located, and to compute
the approximate center of the optic disc in the right
region. With the addition of the clustering algorithm
to the whole process proposed by Lowell et all. a bet-
ter performance has been obtained, improving results
by reducing the wrong localization cases, as will be
shown in results chapter.

2.1 A clustering algorithm

Since the intensity of the optic disc is much higher
than the retinal background, a possible method in or-
der to localize the optic disc is to find the largest clus-
ters of pixels with the highest gray levels. For this
reason, the pixels with the highest 1% gray levels are
selected. After this, a clustering algorithm groups the
nearby pixels into clusters. Iniatilly, each point is a
cluster and its own centroid.If the Euclidean distance
between two centroids is less than a specified thresh-
old ε, these clusters are combined to form a new one.
The new centroid(cx,cy) is computed by means of
Equations 1 and 2.

cx =
n

∑
i=0

xi

n
(1)

cy =
n

∑
i=0

yi

n
(2)

where(xi ,yi) are the cluster points andn is the
number of points in the cluster.

If there are bright areas as well as the optic disc in
the retinal image, the algorithm might compute sev-
eral clusters. The regions of interest are defined as
n×m rectangles whose centers are the centroids of
these clusters. The rectangle size depends on the im-
age resolution.

Figure 1 shows the points which the clustering al-
gorithm is applied to. It is also depicted the regions of
interest computed by means of this process.

2.2 Correlation filter
As depicted in Figure 1(f), several regions of interest
might be computed by means of the clustering algo-
rithm because of bright areas in the retinal images. A
correlation filter is applied to each region in order to
locate the true region where the optic disc is situated.

(a) (b)

(c) (d)

(e) (f)

Fig 1: Top: original digital retinal images. Middle: selected
points (highest 1% gray levels) which the clustering algorithm is
applied to. Bottom: the regions of interest computed by means of
the clustering algorithm when applied to images 1(a) and 1(b).

The optic disc consists of a high intensity near-
circular disc, with a roughly centrally band of low in-
tensity vessels. Due to this fact, the template consists
of a Laplacian of Gaussian with a vertical channel in
the middle to correspond to the major vessel band.
This correlation filter is shown in Figure 2.

The template is correlated with the intensity com-
ponent of the retinal image. We use the full Pearson-
R correlation to take variations in mean, intensity and
contrast into account, as defined in Equation 3.

Ci, j =
∑x,y( f (x,y)− f̄ (x,y))(w(x− i,y− j)− w̄)

∑x,y( f (x,y)− f̄ (x,y))2∑x,y(w(x− i,y− j)− w̄)2

(3)
wherew̄ is the mean value of the template and̄f

is the mean value of the area covered byw.
The region of interest containing the optic disc is

defined asn×m rectangle whose center is the point
with the higher response computed by means of the
correlation filter. Figure 3 shows the final region of
interest of a retinal image in which the clustering al-
gorithm computed two different regions.
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Fig 2: The correlation filter, where the template consists of a
Laplacian of Gaussian with a vertical channel in the middle cor-
responding to the major vessel band

Fig 3: Region of interest defined asn×m rectangle whose center
is the point with the higher response computed by the correlation
filter applied to the regions shown in Figure 1(f), showing only
the right region where the optic disc is located in, and discarding
the wrong region.

3 Optic disc segmentation

Once the region containing the optic disc is computed,
the extraction of the optic disc is performed by means
of a deformable model.

Deformable models or snakes were introduced by
Kass et al. [5], and since then they have widely stud-
ied and many different models have appeared [6–8]
among others, resulting in a invaluable tool for the
medical images analysis [7, 9–11]. In this work the
deformable model used in the segmentation performs
like the proposed by Hu et al. [12], but with some im-
provements to get a better segmentation of the optic
disc nerve head.

Firstly, will briefly introduce Hu’s work, in order
to explain later the improvements applied to this first
proposal.

3.1 Hu’s circular model
The deformable model from Hu et al. [12] works by
combining two models: a global model and a local
model. The global model is a circle with centerc and
radiusr, and is used to get a rough fitting to the bor-
der of the optic disc. The local model is defined by
the centerc and evenly spaced radial spokes, and di-
rection vectorsi = [cos(θi),sin(θi)]. The model is de-
fined by distancesmi from c along each spoke. The
local model has a corresponding global model with
radiusr = mi , the local model’s mean radial displace-
ment.

The force f which guides the process has two
components: an internal forcef int and an external
force f ext. The forces work along the radial spokes.
The external force drags the model toward the attrac-
tor points. The internal force limits model deforma-
tion using two components: global force, which pulls
the model toward the global shape, and the local force,
which smoothes the model by penalizing differences
in deformation between neighboring spokes.

3.2 Alterations to the Hu’s circular model
Three modifications were introduced in the Hu’s
model, following the work from Lowell et all. [3]:

1. A global elliptic model, to get a better fit
to the elliptic shape of the optic disc.

2. Use of the vector gradient, to detect
changes in the radial spokes’ intensity, and
finally,

3. use of energy functionsto support fast
nonlinear optimization.
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3.2.1 The global elliptic model

The global model is an ellipse with a vertical principal
axis and a fixed aspect ratioa (Figure 4).

Fig 4: Global elliptic model and local deformable model.

Global model has a corresponding local model
with radius defined by equation 4.

r =
1
S∑

i

mi

ai
(4)

3.2.2 Gradient vector

In Hu’s work, negative gradient magnitude was used
to compute the forces. Here the smoothed normalized
gradient vector imageϒ (see eq. 5) is used.

ϒ = ∇I/max(‖∇I‖) (5)

Points which attract the model can be chosen us-
ing the directional information from the gradient vec-
tor. Points from the border of the optic disc will have
a gradient vector direction pointing outside the optic
disc, in a radial direction. This way, attractor points
should have the same gradient direction than the radial
vector direction of the spoke they are located over. So,
the final gradient magnitude in a point with distanceρ
from c along the spokei is defined by equation 6.

γi(ρ) =

(

∑
xy

wx,yϒ(x,y)

)

.si (6)

wherewx,y is defined by equation 7 (see Figure 5)

xd = |px−x| yd = |py−y|

wx,y

{

(1−xd)(1−yd) (xd < 1)∧ (yd < 1)
0 otherwise

(7)

Fig 5: Scheme of the bilinear interpolation used to compute the
magnitude of the gradient vector in the attractor points.

3.2.3 Energy functions

A fast nonlinear optimization procedure is performed
to minimize the deformable model energy function,
the Quasi-Newton [13]. This method requires explicit
energy functions and a gradient function.

Energy functions are defined a the sum-squared of
the model’s deformation from the attractors, as shown
in equation 8.

Exy =
1
2

∥

∥

∥

∥

∥

(

1
S∑

i

mn
i −c

) ∥

∥

∥

∥

∥

2

(8)

where

E = Eext+Eint = Eext+Eglo +Eloc (9)

where external energy (Eext), energy of the global
model (Eglo) and energy of the local model (Eloc) are
defined as

Eext =
1
2 ∑

i

(gn
i −mn

i )
2 (10)

Eglo =
1
2 ∑

i

βi(m
n
i − r)2 (11)

Eloc =
1
2 ∑

i

βiα(mn
i −〈mn

i 〉)
2 (12)

DifferentiatingExy with respect toc andE with
respect tomn

i , we get the required gradient functions,
shown in equations 13 to 17.
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i
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i si (13)
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i
=

dEext

dmn
i

+
dEglo
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i

+
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dmn
i

(14)

dEext

dmn
i

= gn
i −mn

i (15)

dEglo
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i

= βi

(

(

mn
i −mn

i

)

−
(

mn
i −mn

i

)

)

(16)

dEloc

dmn
i

= βiα [(mn
i −〈mn

i 〉)−〈(mn
i −〈mn

i 〉)〉] (17)

To choose the parameters, the same approaches
than the chosen in [3] were implemented.

3.3 Segmentation algorithm

Finally, whole the segmentation process is described
in this section.

Once the optic disc rim is located by means of
the he localization algorithm described if the second
section, the first stage of the segmentation process is
performed, adjusting the global model to the tempo-
ral border of the optic disc. Then, the second stage
fits approximately the global model to the whole op-
tic disc rim. Finally, third stage fits the local model
to the optic disc border, getting a much more precise
segmentation.

4 Results

To test the accuracy of the localization and segmenta-
tion algorithms described below, a set of 135 images
where used as the benchmark. Images were acquired
in different centers of the Complejo Hospitalario Uni-
versitario de Santiago de Compostela (CHUS), all of
them with a Cannon CR6-45NM Non-Mydriatic Reti-
nal Camera, with a 768× 576 pixel resolution. Al-
though the camera originally captures color images,
a conversion to gray-level images (with 256 gray lev-
els) was performed prior to the application of the al-
gorithms, since color does not provide any useful in-
formation.

Validation of the algorithms was performed by
expert clinicians of the CHUS, who analyzed the out-
put of the techniques to set its accuracy.

Images in the test set presented a high variability
in features like optic disc shape and diameter, summa-
rized in Table 1.

To validate our experiments, two expert clinicians
segmented manually the optic nerve head from the test

Horizontal Vertical Rate (a)

diameter diameter

Mean 158.281 169.430 1.071
Std.deviation 12.739 12.591 0.056

Maximum 220 225 1.207
Minimum 130 146 0.942

Table 1: Some statistic of the measures of optic discs, obtained
from images in the test set, showing the high variability among
them. First column shows the horizontal diameter, second column
vertical diameter, third column the rate between them. The values
correspond to the mean, standard deviation, maximum value and
minimum value from the measures (in pixels) taken in the images
of the test set.

images, and these results were compared with the re-
sults obtained by the application of the process de-
scribed in the preceding sections. Result from that
comparisons is shown in Table 2, where three cate-
gories were defined (good, fair, poor), function of the
difference between the results obtained by clinicians
and automatic results. This discrepancy for imagej
was computed using equation 18.

δi = ∑
i

∣

∣

∣
mj

i −µj
i

∣

∣

∣

σ j
i + ε

(18)

with µj
i andµj

i summarizing the clinician’s choice
of rim location on spokei of image j, andε = 0.5 a
small factor to prevent division by zero.

Localization
Good Fair Poor

Number images 85 48 2
% 62.963 35.556 1.481

98.519 % 1.481 %
Segmentation

Good Fair Poor

Number images 44 82 9
% 32.592 60.741 6.667

93.333 % 6.667%
Table 2: Results obtained in each stage (localization and segmen-
tation) of the process. Three quantitative categories were defined
(good, fair, poor), with disparities one, two or more, respectively,
computed using equation 18

Analyzing results shown in Table 2, both the
stages of the algorithm, localization and segmenta-
tion, give an mean effectiveness of 95.5%, which is
superior to that of Lowell et al., where algorithm was
first proposed.

To illustrate these results, Figure 6 depicts several
result images from the localization (first column) and
segmentation (second column) stages, and with good
(a-b), fair (c-d) and poor (e-f) results.
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Fig 6: Result images from the localization (left column) and
segmentation (right column) stages, with the three different cat-
egories of results: good (top row), fair (middle row) and poor
(bottom row) results.

5 Conclusions and future work

In this work an algorithm for the precise localization
and segmentation of the optic disc nerve head has
been presented. The algorithm performs in two stages:
in the first, the region of interest where the optic disc is
located is obtained by combining a clustering process
with a posterior correlation procedure.The size of the
central channel (corresponding to the main optic disc
vessel) has been estimated, with a mean size in the
test set of 20 pixels, which is also the size of this area
in the correlation kernel. By other side, the size of
this filter has been calculated for the set of images in
the test set, getting sizes from 130px to 220px. Since
the filter must have at least the size of the bigger op-
tic disc, commented results have been obtained with a
kernel of 221×221px, which have performed well for
the whole set of images. Results from this first stage
show a successful percentage of 98.519%, with only 2
errors in 135 cases, improving the results from Lowell
et all.

In the second stage, the located optic disc is seg-
mented through a deformable model, proposed by
Lowell et al. and which we re-implemented with very
good results (successful percentage of 93.3%). In or-
der to set the parameter values for the segmentation
models, mean horizontal radio for the optic disc was
computed in the images of the test, giving a result of
80px, value which was taken as the ellipse horizontal

initial radius value. The second parameter to tune, the
a ratio, was also set by taking the mean value in the
images of the test set, and finally the value in the ex-
periments was set to 1.06, giving very good results, as
shown above. In the Hu’s equations,α was set to the
value proposed in their work:α = 0.5. Finally, radial
search length valuemi was set to 8 in the first stage of
the segmentation process, 6 in the second stage and 4
in the third, more accurate fitting stage.

The whole process has taken an average time of
1.4 seconds in the experiment performed, with a set
of 135 different digital retinal images.

In the future work we will test the algorithm with
a wider set of images, trying to evaluate the effect
of images with diseases like diabetic retinopathy in
the results. By other side, we are working in a tech-
nique which will allow for the segmentation of the
whole retinal vascular tree, together with the optic
disc, which will serve for the improvement in the eval-
uation of the patients with eye-diseases.
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