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Abstract: - In this paper we design a new practical computer algorithm based on chaotic map lattices which 
allows direct encryption and decryption of color digital images. The basic idea is to convert, pixel by pixel, the 
image color to logistic chaotic maps one-way coupled by initial conditions. After small numbers of iterations and 
cycles, the image becomes indistinguishable due to inherent properties of chaotic systems. The image can be 
completely recovered by the corresponding decryption algorithm in the case if all secure keys, such as map 
parameters, number of iterations, number of cycles, and the image size are exactly known. We test our algorithm 
with a real color image and prove that our cryptosystem incorporates necessary properties inherent to a good 
cryptosystem. These are (i) high sensitivity to any changes in the image, (ii) high sensitivity to secret keys, (iii) 
absence of any patterns in the encoded image, and (iv) robustness against cryptographic attacks. We also discuss 
possibilities for improving our algorithm with further developments in computer techniques and new coupled 
schemes.  
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1   Introduction 
In the last decade, the chaos theory has attracted 
much attention due to its applications to cryptography 
and secure computer communications [1-6]. 
Cryptography is the art of the secret writing. The 
main purpose of cryptography is to develop a 
cryptosystem which converts an original message 
into a non-readable message and then it recovers the 
message back in its original form. This involves 
information transformation to apparent understand-
able garbage in order to non-authorized people cannot 
understand the message [7]. High sensitivity of 
chaotic systems to initial conditions and parameters 
implies strong cryptographic properties of a chaotic 
cryptosystem that makes it robust against any 
statistical attacks. Therefore, the use of chaos in 
cryptography is of great interest to many areas, 
including a data base, internet transaction banking, 
software, protection of communication channels, in 
order to preserve confidential data from indiscretion 
attacks of enemies, spies, interceptors, opponent, 
cryptanalysts, etc. [8,9]. 

    Chaotic communication schemes are based either 
on discrete or continuous systems. Here we consider 
discrete systems due to their simplicity and rapidness. 
Most of the discrete chaotic cryptographic algorithms 
explore one or more chaotic maps as pseudorandom 
number generators producing a binary stream which 
is used for encryption of a plain text to produce a 
cipher text [5,10-14]. The initial conditions or 
parameters or both have been used as secret keys. 
The existing algorithms utilize a block encryption 
technique which allows the encryption of plaintext 
files (blocks of bits); however they do not allow the 
direct encryption of images. The latter requires the 
use of spatially extended dynamical systems, e.g. 2D 
map lattices. The chaotic map lattice (CML) has been 
introduced by Kaneko [15] as a simple model 
capturing essential features of spatiotemporal 
dynamics of extended nonlinear systems. Later CML 
has been applied for modeling complex spatial 
phenomena in diverse areas of science and 
engineering. Recently, Wang et al. [16] have shown 
that the communication with the CMLs is more 
secure that the communication with a single map. 
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Due to finite precision of computer calculations, 
chaotic discrete systems always generate periodic 
time series, however, the period of the periodic orbits 
increases exponentially with the number of coupled 
maps. 
    In this paper, we suggest a new approach to secure 
computer communications based on CMLs. Our 
cryptosystem is different from all known 
cryptosystems because (i) it does not utilize a block 
encryption technique and (ii) it does not require 
synchronization of a receiver with a transmitter. Our 
computer algorithm utilizes only the essence of 
chaos: high sensitivity of a chaotic trajectory to initial 
conditions and to system parameters, confinement of 
the motion to a finite region of the phase space, and 
recurrence properties of a chaotic trajectory (i.e., any 
trajectory originating inside the attractor always 
remains within it and visits all points of the attractor 
in infinite time). This work is the first attempt, to our 
knowledge, of exploring the CML for direct 
encryption and decryption of digital images. 
    The paper is organized as follows. In Section 2 we 
describe the chaotic map lattice and our 
encryption/decryption algorithm. In Section 3 we 
prove our method with a computer experiment by 
encoding a real color image and study the sensitivity 
of our cryptosystem to secret keys. Finally, the main 
results are summarized in Section 4. 
 
 
2   Chaotic Map Lattices 
The logistic map is one of the simplest nonlinear 
chaotic discrete systems known as 
 

xn+1 = axn(1 – xn),                        (1) 
 
where xn and a are the system variable and parameter, 
respectively, and n is the number of iterations. For 
3.57 < a < 4 the map (1) is chaotic. The main idea of 
our cryptosystem is that any image can be 
represented as lattices of pixels, each of which has a 
particular color. The pixel’s color is the combination 
of three components: red, green and blue, each of 
which takes an integer value C = (Cr, Cg, Cb) between 
0 and 255. Thus, we can create three parallel CMLs 
by converting each of these three color components 
to the corresponding values of the map variable, xc = 
xc

r, xc
g, xc

b, and use these values as the initial 
conditions, xc = x0. Starting from different initial 
conditions, each chaotic map in the CMLs, after a 
small number of iterations, yields a very different 
value from the initial conditions, and the image 
becomes indistinguishable because of an exponential 
divergence of chaotic trajectories. In order to be able 

to recover the image, the maps are coupled by the 
initial conditions, i.e. the initial condition x0

i of the 
map i depends on the final variable of the previous 
map i-1 after n iterations, xn

i-1, and contains 
information about the pixel’s color. 
    The process of developing the chaos-based cipher 
can be summarized as follows. Let a = 3.9; for this 
parameter the chaotic attractor occupies the phase 
space between xmin = 0.0950626 and xmax = 0.975. To 
convert the color components C of each pixel to the 
variable xc of the corresponding map in the lattice, we 
use the following transformation: 
 

 xc = xmin + δx(C/255),                    (2) 
 
where δx=xmax-xmin. To extract the value of the color 
component, we apply the inverse function: 
 

 C = round [(xn - xmin)255/δx].             (3) 
 
Equation (3) allows us to transform any state xn of the 
logistic map Equation (1) into a value between 0 and 
255 and thus to visualize the pixel’s color.     
 
 
2.1 Encryption algorithm 
The encryption algorithm includes the following 
steps. 
    Step 1. Let an image contains N × M = m pixels (i 
= 1,2,...,m) as shown in Figure 1(a). Three color 
components of the pixel i are converted to three 
values of the variable xc with Equation (2). For 
example, if the color values of the the pixel i are Ci = 
64, 121, and 176 for red, green and blue components, 
respectively, we obtain xc

i = 0.315909654, 
0.512601554, and 0.702392. 
    Step 2. The color value xc

m of the last map m in the 
lattice is used as the initial condition for the first map 
i=1, i.e. x0= xc

m. 
    Step 3. After n iterations of the first map, we 
obtain the map variable xn

1 and add to this value the 
color value of the pixel, xc

1. The sum value is used as 
the initial condition for the subsequent map, x0

2 = 
xn

1+xc
1. 

    Step 4. We iterate all maps subsequently starting 
from the first map and going through all image 
pixels, pixel by pixel, towards the last map, as shown 
in Figure 1(a). In order to obtain always a stable 
solution and exclude transients, the trajectory should 
be initiated inside the chaotic attractor, i.e. x0 ∈ [xmin,  
xmax]. Therefore, if the sum xn

i + xc
i > xmax, we subtract 

δx, i.e. x0
i+1 = xn

i + xc
i –δx. After one cycle, going from 

the first map to the last one, we obtain the map lattice 
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Fig. 1. (a) Indices for image pixels and (b) encoded 
variables. The arrows indicate coupling directions. 
 
shown in Figure 1(b) which we can be visualized by 
converting the new map variables xn

i+xc
i to the 

corresponding color values by using Equation (3). 
    Step 5. We repeat steps 3 and 4 and make several 
cycles. For the next cycle, the new color value of the 
last map, xc

m(j) = xn
m(j)+xc

m(j) (j being the number of 
the cycle), is used as the initial condition for the first 
map to initiate the next cycle, i.e. x0

1(j+1) = xc
m(j). 

After  j cycles we obtain the map lattice similar to 
that shown in Figure 1(b) and can visualize the 
encoded image using Equation (3). 
that shown in Figure 1(b) and can visualize the 
encoded image using Equation (3). 
    Step 6.    Step 6. We repeat all steps for each color 
component (red, green, and blue) and superimpose 
the three images. 
    Thus, the encryption algorithm is 
 
x0

i(j) = xc
m(j–1),                 if i = 1,                          (4) 

 x0
 i+ 1(j) = xc

i(j),                   if i > 1,                          (5) 
xc

i(j) = xn
i(j-1)+xc

i(j-1),      if xn
i(j-1)+xc

i(j-1)≤xmax,  (6) 
xc

i(j) = xn
i(j-1)+xc

i(j-1)–δx, if xn
i(j-1)+xc

i(j-1)>xmax. (7) 
 
 
2.2 Decryption algorithm 
The encoded image is converted with Equation 3 to 
the map lattice xc

i(j). For decryption, we need to 
recover the original image cycle by cycle in the 
reverse direction starting from the last map m and 
going to the first map i=1 by making the same 
number of iterations for each map as for the 
encryption process. The decryption algorithm 
includes the following steps. 

     Step 1. First, we need to recover the image of the 
j-1 cycle. We start from the last map. The encoded 
value of the penultimate map in the j cycle is the 
initial condition for the last map in the j-1 cycle, i.e. 
x0

m(j-1) = xc
m-1(j). Starting from this initial condition, 

we iterate the last map n times and obtain the value 
xn

m (j-1). The number of the iterations should be the 
same as for the encryption process. The color value 
of the last map in the j cycle is xn

m(j-1)+xc
m(j-1).  

Subtracting xn
m (j-1), we get the color value of the last 

map m in the j-1 cycle, i.e. xc
m(j-1). 

    Step 2. Taking the encoded value of the map m-2 
as the initial condition for the map m-1, we find its 
color value in the cycle j-1 and so on. 
    Step 3. We repeat step 2 for each map in the 
reverse direction from the last map to the first map 
and reconstruct the image of the cycle j-1. Note, this 
it is not the original image. 
    Step 4. To reconstruct the color value of the first 
map in the j-1 cycle, we use the color value of the last 
map m in the j-1 cycle, xc

m(j-1), as the initial 
condition for the fist map i = 1. 
    Step 5. We repeat all previous steps j times to 
obtain the map lattice xc

i(0) and convert it to the color 
values Ci by Equation (3). 
    Step 6. We repeat all steps for each color 
component (red, green, and blue) and superimpose 
the three images to obtain the original image. 
    The decryption algorithm is 
 
 x0

i(j-1) = xc
i-1(j),                  if i > 1,                         (8) 

 x0
i(j-1) = xc

m(j-1),                if i = 1,                         (9) 
 xc

i(j-1) = xc
i(j) – xn

i(j-1),      if xc
i(j) – xn

i(j-1),        (10) 
xc

i(j-1) = xc
i(j) – xn

i(j-1)+δx, if xc
i(j) – xn

i(j-1) < 0. (11) 
 
    Thus, our cryptographic algorithm has four secrete 
keys: system parameters, number of iterations, 
number of cycles, and the image size. For higher 
security each map can have differing parameter and 
differing number of iterations.  
 
 
3   Computer Experiment 
Conventional cryptography deals with binary streams 
and utilizes the terms of plaintext (the original text to 
be encoded) and ciphertext (the encoded text). A 
good cryptosystem should incorporate the following 
features: (i) be sensitive with respect to a plaintext 
(slight modification in the plaintext creates 
completely different ciphertext); (ii) be sensitive with 
respect to keys (change in a secret key produces a 
completely different ciphertext); and (iii) map a 
plaintext to a random ciphertext (no any patterns in 
the ciphertext). 
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Fig. 2. Sensitivity to number of iterations. (a) 
Original image, (b) image encoded with n = 1, (c) n = 
30, and (d) n = 75. a = 3.9 and j = 3.  
 
Since our cryptosystem does not deal with binary 
streams and since both the original image and 
encoded image are digital, we will use the terms 
original image and encoded image instead of 
“plaintext” and “ciphertext”. In the following we will 
demonstrate that our cryptosystem compiles all 
cryptographic properties inherent with a good 
cryptosystem.   
    As we mentioned above, our cryptosystem has four 
secret keys: the system parameter a, the number of 
iterations n, the number of cycles j, and the image 
size m = N × M. Here, we consider the sensitivity of 
our cryptosystem to the secrete keys. The original 
image (N × M = 455 pixels) is shown in Figure 2(a). 
The sensitivity of our encryption algorithm to the 
number of iterations n is demonstrated in Figs. 2(b)-
2(d) where we display the images encoded with n = 1, 
n = 30, and n = 75, respectively.  
     For visualization, the values of the map variables 
xc

i(j=1) and xc
i(j=3) are converted to the color 

numbers Ci by Equation (3). No decryption algorithm 
Equations (8-11) are used. These figures illustrate a 
crucial dependence of chaotic trajectories on initial 
conditions. One can see that using only 1 iteration for 
each map, the image can be still distinguished even 

after 3 cycles [Figure 2(b)]. The use of 30 iterations 
makes the image almost indistinguishable, but the 
colors are not uniformly distributed [Figure 2(c)]. 
However, for 75 iterations all colors are completely 
lost in the encoded image [Figure 2(d)].        
    The number of iterations n is not so critical for the 
encryption/decryption time (EDT), as the number of 
cycles j. For example, EDT for the images shown in 
Figures 2(b)-2(d) are varied between 165 and 170 
seconds. 
    The sensitivity of our encryption algorithm to the 
number of cycles j is demonstrated in Figures 3(a) 
and 3(b), in which we display the images encoded 
with 1 and 2 cycles, respectively. As seen from the 
figures, only 1 or 2 cycles are not sufficient for secure 
encryption of the image because the original outline 
still can be distinguished in the encoded image. 
Therefore, we need to make at least 3 cycles to get an 
indistinguishable image, as shown in Figure 2(d). 
    The larger n and j are, the better security is. From 
the other hand, EDT also becomes longer. To have 
reasonable EDT, we should balance between these 
two factors (security and time) to select adequate 
values for n and j. Moreover, EDT increases 
significantly with increasing m, as one can see from 
Table 1, where we show EDT (in seconds) for three 
different image sizes and three different j. The 
calculations have been performed with Pentium IV 
3.0 GHz PC, 1.0 GB RAM and visualized with 
Microsoft Visual C#.NET 2005. From Table 1 one 
can see that for higher resolution and security, we 
need to sacrifice to time. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Sensitivity to number of cycles. (a) Image 
encoded with j = 1, and (b) j = 2. a = 3.9 and n = 75. 

 
Table 1. Details of encryption/decryption time. 

 
Image size 

(N×M pixels) 
Time 
(j = 1) 

Time 
(j = 2) 

Time 
(j = 3) 

300×200 13.6 26.7 39.1 
455×569 58.0 113.0 169.3 

2400×1200 626.6 1255.9 1866.2 
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    To prove the first property of a good cryptosystem, 
we slightly modify the original image with a black 
square at the right inferior corner [Figure 4(a)]. The 
modified image encoded with 75 iterations and 3 
cycles is shown in Figure 4(b) and its histogram is 
plotted in Figure 4(c). The histogram of the encoded 
original image is shown in Figure 4(d). Although the 
both encoded images [in Figures 2(d) and 4(b)] are 
generated by the same keys, the distribution of their 
colors is completely different [compare Figures 4(c) 
and 4(d)]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 4. Sensitivity with respect to plaintext. (a) 
Slightly modified image with black square indicated 
by white arrow, (b) encoded modified image, (c) 
histogram of encoded modified image, and (d) 
histogram of encoded original image shown in Figure 
2(d). 
 
    Finally, our cryptosystem complains the third 
property of a good cryptosystem. The image encoded 
with a relatively small number of iterations and 
cycles does not display any patterns, as seen in Figure 
2(d). 
 
 
4   Conclusion 
In this paper, we have described a new secure 
compute algorithm based on chaotic map lattices for 
encoding and decoding digital images. Our algorithm 
explores the important properties of chaos: 
localization of a chaotic attractor in a particular 
region of the phase space, recurrence of a chaotic 
trajectory (it visits all points of the chaotic attractor in 

infinite time) and its high sensitivity to initial 
conditions and map parameters. The first two 
properties allow decoding an infinite number of 
colors, and the second one provides a very high 
security of the chaotic cryptosystem, because after a 
small number of iterations the trajectory occurs far 
away from the initial state. We have demonstrated 
how a color image can be directly converted to 
lattices of chaotic logistic maps one-way coupled by 
initial conditions and how the image can be 
completely recovered if all secret keys are exactly 
known. In our encryption algorithm the coupling is 
necessary for both further decoding of the image and 
conserving information about the pixel's colors. Our 
encryption/decryption algorithm complies with all 
essential properties for a good cryptosystem and can 
be easily adapted to other chaotic maps including 
two-dimensional maps, like the Hénon map or Baker 
map. 
     The important problem in computer communica-
tions and telecommunications is the possibility of 
communicating in real time. Unfortunately, the speed 
of modern personal computers is still insufficient for 
communicating with our algorithm in real time. 
However, we believe that progressing development of 
computer technology and further improvement of the 
algorithm will allow decreasing the 
encryption/decryption time. The future possible 
research in this direction we suppose will be the use 
of mutual (spatial) coupling instead of one-way 
coupling. This will make an image indistinguishable 
after smaller numbers of iterations and cycles. Other 
developments of cryptosystems based on CMLs 
might be the use of transmitter-receiver coupling, i.e. 
each map of a transmitter could be coupled with the 
corresponding map of a receiver and then, to recover 
an image we may apply a conventional chaotic 
communication technique based on complete 
synchronization. The latter approach does not require 
reverse calculations and therefore will safe time and 
probably will allow computer communications and 
telecommunications in real time.  
   Finally, our encryption/decryption algorithm can be 
extended to a 3D chaotic map system, i.e. to a volume 
of maps. This will allow direct encoding 3D images, 
like holograms, which we believe will be widely used 
in future communications. 
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