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Abstract: - The Monte Carlo Simulation is one possibility to calculate safety parameters like MTTF for safety related 
systems. With this simulation the real world of failure on demand of a safety function is simulated using random 
numbers. The MTTF-value can be calculated directly via Monte Carlo Simulation or with the help of distributions like 
χ2 - or Student-distribution. Important is the fact, that a high number of simulation cycles and/or a large 
simulation time is used. 
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1   Introduction 
Monte Carlo Simulation (MCS), a numeric experimental 
procedure, is applied to tasks that can be described as 
statistical problems. Typical statistical tasks are the 
determination of mean values, which can also be 
determined by a MCS approximation. One uses random 
values, which follow particular distributions, to solve the 
problem. A random variable is a variable, which in case 
of a repeated experiment or respectively a simulation can 
have different values from the space of possible values 
with certain probability. The values themselves are 
characterized as random values. From a mathematical 
point of view the sentence of Glivenco-Cantelli gives the 
basis for a MCS: 
A function of random variants Z, which are defined by a 
distribution  contains by 
experiment for the values x

),,,( 21 nxxxFZ K=

i from its distribution a 
random solution Zj. 
The distribution of Zi converges to the true distribution Z 
if one carries out a number of n simulations. It is 
important for simulations with random variables that the 
single results Zi stay random. Therefore, the random 
value to be used is chosen by equally distributed random 
numbers. If a computer carries out the simulation, as is 
today the case, then the random numbers are derived 
from a random number generator of the computer. The 
random numbers are not purely random by nature, as the 
numbers with roulette, because they are calculated from 

a calculation algorithm. In this paragraph it is shown 
how failure time calculations of a system can be carried 
out with help from MCS. 
 
 
2.1 Mathematical Basis 
A random value is defined as a value, which will have a 
different value (from the space of possible values) 
depending on probabilities when repeating the same 
experiment. They are described with the Greek alphabet 
τ, ξ, ζ etc. The random value, e. g. τ, is characterized by 
the distribution function 

}{)( xPxF .  = τ ≤
This means that the value of F(x) represents the 
probability with which the random value τ takes a value 
≤ x. The probability that τ takes a value in the interval 
(a, b] can be described with  

)()(}{ aFbFbaP   τ< ≤ = −
The distribution density (or probability density or just 
density), of τ is characterized as 

dx
xdFxf )()( =

∫ ∫
∞−

∞

∞−
==

x
f(x)dxdyyfxF 1 and  )()( .

  

with 

 

The failure free operational time of a unit is often 
characterized in the reliability theory as τ. Here, τ 
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represents a positive random value with F(0) = 0. The 
reliability function R(t) represents the probability that the 
considered unit operates failure free in the interval (0, t]. 
Thus 

{ }tPtR >= τ)( , 
and therefore for R(t): 

).(1)( tFtR −=  
Also the failure rate is defined as 

)(
/)(

)(1
)()(

tR
dttdR

tF
tft −=

−
=λ . 

In summary it applies, for a continuous random value τ 
with density f(t), that the expected value (mean value) is 

calculated as . The above-mentioned 

equation is reduced for positive random values (t > 0) to 

, and it can be shown that for a positive 

value the following applies:  

∫
∞

∞−
= dtttfE )(][τ

∫
∞

=
0

)(][ dtttfE τ

∫ ∫
∞ ∞

=−=
0 0

)()(1(][ dttRdttFE τ .  

In general it is assumed here that R(0) = 1. The mean 
value calculated in this way is therefore identical to the 
mean value of the failure free operational time MTTF. 
Therefore, one gets the equation for the calculation of 
the MTTF values 

∫
∞

==
0

)(][ dttREMTTF τ . 

It also applies here that this equation is valid for single 
components as well as for systems.  
Two distributions are of major importance when 
calculating the MTTF via Monte Carlo Simulation. First 
of all, the χ2 distribution. Here, the upper and lower 
limits are determined with the α value, where the MTTF 
values to be simulated need to be 95 % of the time. The 
95 % value means that 5% of the simulated value is 
allowed to be outside these limits. This means that for 
the same number of simulations a wider confidence 
interval is required if one wants to reduce this value. The 
number of simulations needs to be increased if a smaller 
confidence interval -and at the same time higher safety- 
is desired, which, on the other hand, leads to a 
significant increase in simulation time. It is known that a 
χ2-distribution becomes a normal distribution for the 
range against infinity.  
On the other hand, the student distribution (also known 
as t-distribution) converges faster or less fast to a normal 
distribution when the number of simulations increases. 
For the χ2 distribution the statements apply concerning 
the convergence interval. 
In order to get a first estimate it is possible to get useful 
interval limits by considering the relative frequency. For 
this, one selects the frequency at determined times of the 

simulation, for which corresponding specific MTTF 
values are available, and derives the so-called average 
MTTF value. Afterwards the deviation of the individual 
values can be determined compared to the mean value. 
Also here a deviation limit of 5 % is chosen. 
If the random values X1, X2, ...,XN are independent and 
identically distributed and a further random variable YN 
is represented by the function 

)21(1
NN XXX

N
Y +++⋅= L  then the limit value  

cYN
N

=
∞→

lim  is developed with . ∑ =⋅=
j

i
iXPic )( 1

If j represents the maximum possible number of 
elementary events then the value c is represented as 
mean and represents the expected value for the random 
variable X1. The random variable YN, on the other hand, 
is characterized as mean time and converges for N 
attempts to the mean c for each individual attempt [10] 
[13] [14] [15] [16] [17] [18] [19]. 
 
2.1.1   Random numbers  
A number of real phenomena can be represented as 
stochastical processes. In analytical models randomness 
is seized by setting distribution types and the 
corresponding parameters for the calculations. One of 
the most important questions when considering random 
numbers that are computer-generated, is the formulation 
of the program’s algorithm for the generation and 
derivation of the ordered distribution of the generated 
numbers. 
In principle the following requirements are formulated 
for this set of tasks. The computer system needs to 
derive a sequence of real numbers that behave as if they 
were independent and randomly chosen from the interval 
between 0 and 1 and equally distributed. 
The uniform distribution in the interval [0, 1] belongs to 
the continuous distributions and can be described as 
follows: 

[ ]
⎩
⎨
⎧ ∈

=
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1,0for            
0
1
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x
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Often this is also characterized as pdf (probability 
density function). The expected value of the distribution 
can then be determined with 

2
1

2
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The variance is determined by 
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The distribution function is 
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Here we need to consider what affects the quality of the 
random generator. Also here a lot of research has taken 
place in the past, which resulted in criteria that can be 
used to classify the quality of random number 
generators. One criterion is the independence of the 
random generated sequence. Furthermore, the uniform 
distribution is used for the evaluation. The empirical 
distribution of the random numbers must as much as 
possible represent a constant process for the interval 
[0, 1] and an often-increasing density function is not 
permissible. Furthermore, the population density is a 
criterion for the quality of the generator and therefore 
also the total simulation. There are always gaps between 
the characteristics, which in principle cannot be closed, 
as algorithmically based operating random number 
generators can only derive a limited amount of different 
numbers. The gaps may not significantly influence the 
uniform distribution criterion, and a sufficient different 
amount of numbers must be produced. The statement 
often mentioned in literature about the efficiency 
(memory and program efficiency) is nowadays, because 
of the possible memory space and the dramatically 
increased calculation power, of no significant meaning 
any more. 
The methods most often used today are taken from the 
class of methods of the linear congruence.  
Next, one of the most used algorithms for the derivation 
of random numbers is presented: 

mcxax ii mod)(1 +⋅=+  
With this recursive algorithm it is to be ascertained that 
the parameters are selected favourably. In general m is 
chosen as double power based on the efficient 
processing in computer systems. The choice of 
parameters has also a direct influence on the potential 
cycle length. An algorithm is particularly promising 
when the largest common denominator of m and c is not 
larger than 1 and a equals a value of , where k is 
an integer. 

k⋅+ 41

These requirements need to be considered when 
choosing a mathematical program when developing a 
program for this specific problem. The program chosen 
for the following simulations meets these requirements 
and works with the briefly mentioned linear congruence 
method.  
For the Monte Carlo Simulation of safety related 
systems it is required to generate random numbers for 
the cases where within one path a component failure can 
occur. One falls back on the following equation for the 
calculation of the new value: 

)ln(1 xi λ
λ −=  

Here, x represents the generated uniformly distributed 
random value in the interval between 0 and 1, and λ the 
primary failure rate of a block [11] [18] [21]. 
 

 
2.1 Monte-Carlo-Algorithm 
The Monte Carlo method represents a possibility to 
generate random systems by simulation. In this way one 
can realize the MTTF value of a system. The following 
requirements need to be met for the used Monte Carlo 
algorithm: 
The system consists of n components. All components 
and their states are independent of each other. 
The individual components and the system exist in the 
states “failure”, “operational” or “not operational”. 
All components have an exponentially distributed 
probability of failure, i. e. the failure rate λ or its 
reciprocal value respectively, the lifetime τLT, is 
constant. The lifetime τLT is known for each component. 
If a reliability block diagram of the system is present, 
then at least one path must exists between input and 
output of the system (which consists of those 
components) that carries out the function of the system. 
The path description is in literature known as “success 
path” method. The method is comparable with the 
Lee algorithm [11]. Also with this algorithm associated 
components are combined in paths. A path is not 
allowed to be a loop, i. e. a component is only allowed to 
be present in a path once. 
The components of a path cannot be used any more 
unless they are used by another path. If the path of the 
system fails, the failed path is taken into operation again. 
After a system failure, a random generator derives a new 
lifetime for the failed component. 
The repair time for each component is neglect able. 
Repair or exchange of components has no influence on 
the way the system functions and are not considered with 
the developed program. 
The following notations are used in the calculation 
algorithm:  
i Component index  
j Path index 
k Index of failed systems  
mi Number of paths that contain component i 
Pfij Path j, which contains component i, described 
   by a vector 
qk System operational time until failure k 

k
it  Remaining lifetime of component i in case of 

    system failure k – 1 
k
ijL  Lifetime of the path Pfij with component i of the 

  path j 
k
iS  Maximum path lifetime (= maxj{ }) of a 

  component i, which exists in the different paths 
  j. 

k
ijL

 
If for example  represents the path vector of a series 
system then 

ijPf
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{ }k
ii

k
ij tL min=  

it applies for all components i with  for the kijPfi∈ th 
failure of the system.  
If the system fails with the last operation path then 

{ }k
ijij

k Lq max=  
applies over all paths j of a component i and for all 
components i with the kth failure of the system. 
If for the remaining lifetime of the component i in 
comparison to the maximum path lifetime the following 
applies 

k
i

k
i St ≤  

the component i lays in between the operational time 
 (qk-1) with the (k-1)th failure and the operational time (qk) 
with the kth failure. 
If for the remaining lifetime of the ith component in 
comparison to the maximum path life time the following 
applies  the component causes within the 

interval 

k
i

k
i St >

[ ]kk qq ,1−  not the failure within the path, in 

which the component lays, and in the interval [ ]1, +kk qq  
the remaining lifetime of the ith component is 

 [4] [5] [6] [11].  k
i

k
i

k
i Stt −=+1

 
2.1.1   Calculation algorithm of the MTTF with 
Monte Carlo simulation  
The determination of the mean value takes place by 
determining for each simulation cycle the number of 
failures k for the considered time frame t = Tx. Per 
simulation cycle the MTTF value can be calculated from 
the number of failures k at a certain time Tx with the 
formula 

1+
=

i

x
isimulationfor k

T
MTTF . 

Attention should be paid to raising the derived number 
of failure k to one, as it is assumed that in between the 
last registered failure and ∞→t  another failure will 
occur. The MTTF mean value for all simulations is 
obtained if the mean value is now calculated from the 
MTTF values to be calculated. The formula for this is: 

j

MTTF
MTTF

j

i
isimulationfor

ssimulationjformean

∑
== 1   

or with using above mentioned formula: 

.
11

j
k
T

MTTF

j

i i

x

ssimulationjformean

∑
= +

= . 

If one wants to calculate the mean time for j simulations 
at time t = Tx hours, then the number of all failures kS 

that occurred at all simulations needs to be determined. 

The sum of all failures kS is  ∑
=

=
j

i
iS kk

1
The median number of all failures for j simulations is 

calculated with 
j

k
k

j

i
i

S

∑
== 1  

For all simulations the same time frame 0 < t < Tx is 
considered, where for j simulations the failures ki with 
I = 1 ... j have occurred in order to determine the MTTF 
mean time of all simulations. The formula for the mean 
time is: 

j

k

T
k
T

MTTF

j

i
i

x

S

x
ssimulationjfortimemean

∑
=

=

=

1

 

The mean as well as the mean time for the MTTF value 
is calculated according to the above formula. The result 
is presented as a vector, where the first element 
represents the mean time, the second element the mean, 
and the third element the sum of all failures per 
simulation cycle. 
The values  are required to obtain an 
approximated distribution density for the random 
variable MTTF

isimulationforMTTF

Mean with help of the relative frequency. 
From these values a minimum and a maximum can be 
determined. The distribution of the searched random 
value MTTFMean is obtained if the interval is divided 
between the minimum and the maximum in n equal 
intervals and one adds how many values 

 fall in each interval. The relative 
frequency is obtained by dividing the corresponding 
number of values in each interval by the number of all 
values. A histogram can be created with the relative 
frequencies. It can serve as a first approximation of the 
unknown density for the random value MTTF

isimulationforMTTF

Mean. 
Further histograms need to be created at different times 
Tx to make a statement about which density it possibly is. 
If one derives the area below the histogram, then this 
value is equal to the probability that a, from the random 
sample taken, MTTFmean falls within the confidence 
limits, which are determined by the left and right limits 
of the area. Mathematically this is formulated by the 
equation: 

95,0}{ =<< omeanu xMTTFxP  
Here, xu and xo are the lower and upper limit 
respectively, where the random value MTTFMean exists 
within a probability of 95 %.  
Another possibility to calculate the confidence interval is 
with help from the χ2-distribution. Also here a lower and 
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upper limit where the random value MTTFMean exists 
with 95 % probability must be given. The interval limits 
at time Tx result in 

[
uchi

Tsim x

_
2

⋅
⋅ ,

ochi
Tsim x

_
2

⋅
⋅ ]. 

Here, the number of simulations for the time Tx must be 
set for the variable sim. chi_u and chi_o are calculated as 
follows:  
The corresponding variables chi_u and chi_o can be 
calculated with help from the inverse χ2 distribution and 
as basis the formulas 

975,0
2

1

2
2

2.}{
_

0

1
22
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⎜
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⎜
⎝
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−−
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nx

dx
n

xe
DistP

chi

αχ  

with chi_o as upper integrand and the formula 

025,0
2

2
2
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22
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⎞

⎜
⎝
⎛⋅

=− ∫

−−

uchi

chi

nx

dx
n

xe
DistP

chi

αχ  

with chi_u as lower integrand. Besides the α value also 
the so-called error probability is required, which gives 
the probability that the desired random number does not 
exist within the desired limits, nor the desired degree of 
freedom nchi. For the upper limit the degree of freedom 
nchi_o results in . nn ochi ⋅= 2_

For the calculation of the MTTFMean the variable n 
represents the number of all failures over all simulations 
at time Tx. For the determination of the lower limit the 
following approach is chosen: 

22_ +⋅= nn uchi  
In literature this approach is justified because these 
random samples concerning time are cancelled. The t 
distribution or student distribution is the third possibility 
to determine the confidence limits. Also here a lower 
and upper limit must be given where the random value 
MTTFMean lays within with a probability of 95 %. 
The interval limits at time Tx are determined by 

[
f

stx
f

⋅−
−

2
;1 α

,
f

stx
f

⋅+
−

2
;1 α

]. 

Here, x  is the MTTF mean value, s the standard 
deviation of the given simulation and f the degree of 
freedom for the t distribution.  
For the t-distribution the following approach is chosen: 

The density p of the t-distribution is 

⎟
⎠
⎞

⎜
⎝
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⎟
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2
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f
x

fonDistributitp

f

π
  

where Γ means the Gamma function and f the degrees of 
freedom. 
The number of degrees of freedom is obtained from  

1−= simf  
where sim is the number of simulations. With 

α−=⋅= ∫
+

−
1}ondistributi{}ondistributi{

x

x
dxtptP  = 0,95 

the integrants -x and +x are calculated with help from the 
inverse t-distribution function qt(α, f), where applies 

),
2

1(),
2

( fqtfqt αα
−−= . 

Next to the α value the so-called error probability and 
degree of freedom f are required [7] [8] [9] [12] [14] [20] 
[22]. 
 
 
3   2oo4 System, an Example 
The 2oo4 system, as presented in consists of twelve 
functional blocks, four input circuits (AI), four safe logic 
solvers (L) and four output circuits (AO), where the 
output circuits are divided into two individual blocks. 
The failure rates listed in Table 1 for these functional 
blocks are in size comparable with values in practice and 
are also used in the calculations with the Markov 
models. These failures rates are the starting values for 
the failure rates of the Monte Carlo program. Before the 
start of the program the individual path combinations 
need to be determined beside the determination of the 
failure rates of the individual functional blocks. 

AI1 L1

AI2 L2

AI3 L3

AI4 L4

AO1.1 AO2.1

AO1.2 AO4.2

AO2.2 AO3.1

AO3.2 AO4.1

 

Fig. 1: Block diagram 2oo4 system 
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In one path all those functional blocks of a system are in 
series (for example of a safety system) that are required 
to confirm an incoming signal by the logic solver at the 
input of the system and that require an appropriate 
response at the output of the system. Here counts that if 
a functional block fails also the path fails. The block 
diagram of the possible path combinations for a 2oo4 
system is presented in Fig. 2. The matrix required for the 
simulation program: 

Path combination matrix :  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

121110
987
654
321

Table 1: 2oo4 system; Component failure 
rates 

   Components 
 
Failure rate λ 

AI L AO 

Channel 1 1600 FIT 2500 FIT 4200 Fit 
Channel 2 1600 FIT 2500 FIT 4200 Fit 
Channel 3 1600 FIT 2500 FIT 4200 Fit 
Channel 4 1600 FIT 2500 FIT 4200 Fit 

 
For the simulation program the following data are 
required: 
Start time :     t_start 
End time:     T 
Time increment:    t_inkrement 
Simulation cycles per point in time:  sim. 
 
The start values for these variables can be taken from 
Table 2. The results of the simulation for the MTTF 
values of the current 2oo4 system are presented in  
Fig. 3. Here the upper curve shows the mean time of the 
MTTF values, while the lower curve represents the 
mean. At time t = T = 500000 hours for 100 simulations 
the curves in  
Fig. 3 show different values for the mean as well as the 
mean time. Still, also here counts: for  the mean 
time converges to the mean. The value is then identical 
to the MTTF value from the calculated Markov model. 

∞→t

1 2 3

4 5 6

7 8 9

10 11 12

 
Fig. 2: Path combinations for a 2oo4 
system 

The values presented in Table 3 for the mean time and 
the mean were obtained from Fig. 3. One can determine a 
deviation of 13 % for the mean and a deviation of 2,5 % 
for the mean time if these values are compared to the 
theoretical MTTF value from the Markov model. Fig. 3 
shows that the simulated values converge to the 
theoretical Markov values for increasing T.  
 

Table 2: 2oo4 system; Start values for the 
Monte-Carlo-Simulation 

t_start [hours ] T [hours ] t_inkrement 
[hours ] sim 

1000 500000 10000 1000 

 

1 .105 2 .105 3 .105 4 .105 5 .105
0

1 .105

2 .105

3 .105
300000

0

MTTF_1 t( )

MTTF_2 t( )

5000001000 t

MTTF_1

MTTF_2

 
Fig. 3: Simulation MTTF 2oo4; Mean 
time, mean for 100 simulations per point 
in time 

Table 3: 2oo4 system; Mean time and 
mean with deviation from the theoretical 
MTTF value for 100 simulations per time 
of point 

Theoretical 
MTTF-

Wert from 
Markov 
model 

in hours  

ion 
me at time  T 

Fig. 3

ion mean at ti
om   

Fig. 3

Deviation
MTTFMar

kov -  
MTTFMea

n tkme (T) 
in % 

Deviation 
MTTFMarkov 

-  
MTTFMean 

(T)  
in % 

134119 137500 116670 2,52 -13,01 

 
The following simulation determines how large the 
deviations from the theoretical values are when the 
simulation cycles per point in time differ. The number of 
simulation cycles is 10, 100 and 1000. All other start 
conditions are equal to the listed values in Table 2. 
The result of a first simulation of a mean for the MTTF 
value was obtained from the curves of Fig. 4 and is 
summarized in Table 4. From the table it can be taken 
that at time T = 500000 hours the deviations between 
MTTFMarkov and MTTFMean for 100 simulations is smaller 
than for ten simulations. For 1000 simulations the 
smallest deviation exists between MTTFMarkov and 
MTTFMean at time T. The result for 1000 simulations 
corresponds with the expected results. For 100 
simulations one would have expected a value between 
the value for 10 and 1000 simulations. 
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However, one should note the following: The results are 
only interpreted as so-called instant results. Especially 
for limited simulation cycles the results can clearly vary. 
It is important that the trend is in the right ranges. The 
trend can be confirmed based on Fig. 4. For ten 
simulations, presented by curve 1, very large fluctuations 
can exist between the individual MTTF values for two 
sequential points in time. The MTTF value randomly 
obtained from the simulation can come very close to the 
theoretical value. The curve for 100 simulations, curve 2, 
shows in general fewer fluctuations as the curve for ten 
simulations. If, on the other hand, the curve for 1000 
simulations is considered, curve 3, then this shows the 
least fluctuations between two sequential points in time. 
 

4 .105 4.2 .105 4.4 .105 4.6 .105 4.8 .105 5 .105
0

1 .105

2 .105

3 .105
300000

0

MTTF_2sim t( )1

MTTF_2sim t( )2

MTTF_2sim t( )3

500000400000 t

 MTTF_2sim(t)1 (Curve 1) 
 MTTF_2sim(t)3 (Curve 3) 

 MTTF_2sim(t)2 (Curve 2) 

 
Fig. 4: Simulation MTTF 2oo4; Mean for 
10, 100 and 1000 simulations per point in 
time 

 
Table 4: 2oo4 system; first simulation; 
Mean with deviation of the theoretical 
value for 10, 100, and 1000 simulations 
per point in time 

Theoretical 
MTTF value 
from Markov 

model in hours  

Number of 
simulation 

cycles 

Simulation 
mean at time T 
in hours from 

Fig. 4

Deviation 
MTTFMarkov -  

MTTFMean (T) in 
% 

134119 10 108330 -19,23 
134119 100 116670 -13,01 
134119 1000 116670 -13,01 

 
3.1 Frequency distribution of MTTF values 
On the basis of Fig. 5 it is obvious that the emphasis of 
the MTTF value for a 2oo4 system with the chosen 
failure rates Table 1 is around . At the interval on 
the right hand side, thus at  hours, a number of 
recognizable simulations ( ) exists, for which at this 
time no system failure is still registered. 

5101 −⋅
5105 ⋅=T

5≈

This means that for about 0,5 % no statement can be 
made concerning the MTTF value. Nevertheless, also 
these values are considered when obtaining the MTTF 
value of the system. For that purpose the number of 
failures obtained until time T is increased by one in the 
Monte Carlo program. The smaller the number of 

simulations for which at time T no failure exists yet in 
the system, the more accurate the MTTF value of the 
system to be determined. Fluctuation in the order of 
percentages must be expected by determining the MTTF 
value for a 2oo4 system. 
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Fig. 5: Frequency distribution for the 
2oo4 system at time T = 500000 hours and 
1000 simulations 

 
Two roads can be taken in order to receive a smaller 
deviation: 

- An increase of the simulation cycles or 
- An increase of the simulation time. 

 
In order to make reliable statements concerning the 
values, the time T is set to 5000000 hours in the 
following simulations. 
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Fig. 6: Frequency distribution for the 
2oo4 system, at time T = 500000 hours 
and 100 simulations 

 
Fig. 6 represents the frequency distribution at time T = 
5000000 hours. It is recognized that for a 2oo4 system 
with chosen failure rates according to Table 1 the focus 
point of the MTTF values exists from  to 

. If one compares Fig. 6 with Fig. 5, then it is 
 1021 5−⋅,

51061 −⋅,
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recognized that the distribution approximates a normal 
distribution better at T = 5000000 hours than at T = 
500000 hours. This evidence shows that much better 
simulation values are obtained for T = 5000000 hours 
than for T = 500000 hours. 
 
3.2 χ2distribution for determining MTTF 
If a two-sided confidence interval is built with help from 
the χ2distribution for each determined MTTF value at a 
certain point in time t, which is chosen for the 
simulation, then this leads to the results in Fig. 7. 

Upper_Chi²-Limit

MTTF_2

Lower_Chi²-Limit

4.5 .106 4.6 .106 4.7 .106 4.8 .106 4.9 .106 5 .106
0

1 .105

2 .105

3 .105
300000

0

o_chi t( )

MTTF_2_1 t( )

u_chi t( )

50000004500000 t

u_chi(t)

l_chi(t)

 
Fig. 7: Confidence interval for χ2 
distribution (10 %), 2oo4 system, for 100 
simulations per point in time 

 
From Fig. 7 the following values can be derived for 100 
simulation cycles for T = 5000000 hours: 
 

Table 5: 2oo4 system; simulation for T = 
5000000 hours and 100 simulation cycles; 
Determination of the confidence intervals 
for the χ2 distribution 

Theoretical 
MTTF 

value from 
Markov 
model 

in hours 

Number of 
simulation 

cycles 

Simulation 
mean at time 

T in hours 
from Fig. 7

Lower 
confidence 

limit for   
95 % 

certainty 
from Fig. 7

Upper 
confidence 

limit for     
95 % 

certainty 
from Fig. 7

134119 100 129170 125000 133330 
 

Deviation 
MTTFMarkov 

-  
MTTFMean 

(T)  
in % 

Deviation 
MTTFMarkov 

-  
lower 

confidence 
limit for  

95 % 
certainty in 

% 

Deviation 
MTTFMarkov - 

upper 
confidence 
limit for  95 
% certainty 

in % 

Deviation 
MTTFMean -  

lower 
confidence 

limit for   
95 % 

certainty in 
% 

Deviation
MTTFMean - 

upper 
confidence 

limit for  
95 % 

certainty 
in % 

-3,69 -6,80 -0,59 3,34 3,22 

 
The results are interpreted as follows: With a certainty of 
95 % the wanted MTTF value at time T = 5000000 hours 
exists with the time interval [125000, 133330] hours. For 
this simulation this means a maximum deviation from 
the theoretical calculated MTTF value of 3,7 %. 
In general the following can be noted: 

The χ2 distribution is much better suited to determine 
failure limits, as it is possible with help from the 
frequency distribution. 
The χ2 distribution makes timely, much faster 
simulations and at the same time more accurate results 
possible. 
These limits do not mean that a simulated value cannot 
exist outside the limits. Therefore the limits in this 
example only represent a probability of 95 % that the 
wanted MTTF value exists within the simulated MTTF 
value. 
3.3 Student distribution for determining MTTF 
A third possibility to determine the confidence interval is 
the application of the student distribution. In the Monte 
Carlo program a certainty of 95 % was already 
ascertained for the determination of the limits with help 
from the frequency distribution. Therefore, the α value 
was determined 0,05 as with the χ2 distribution. With the 
α value a lower and upper limit can be determined where 
95 % of the simulated MTTF values should exist. The 
95 % limit means that 5 % of the simulated values exist 
outside these limits. This means that if one wants to 
decrease this value, a wider confidence interval is 
created while keeping the number of simulations equal. 
The number of simulations needs to be increased if a 
very narrow confidence interval with high certainty is 
desired. This leads again to significantly longer 
simulation times. 
It can be stated: 
If one builds the two-sided confidence interval with help 
from the student distribution for the derived MTTF value 
at a certain point in time t, which is chosen for the 
simulation, then this results in Fig. 8.  
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Fig. 8: Confidence interval for student 
distribution (10 %), 2oo4 system, for 
1000 simulations per point in time 

 
It is shown that both student distribution curves (curve 1 
and curve 2 in Fig. 8), which build the interval limits, 
approximate very well the simulated MTTF curve (curve 
3) for the full time frame. Also the student distribution is 
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considered at time T = 5000000 hours and gives the 
following values in Table 6 for 100 simulations per point 
in time: 

Table 6: 2oo4 system; simulation for T = 
5000000 hours and 100 simulation cycles; 
Determination of the confidence intervals 
for the Student distribution 

Theoreti-
cal MTTF 
value from 

Markov 
model 

in hours  

Number of 
simulation 

cycles 

Simulation 
mean at 
time T in 

hours from 
1st/2nd  

simulation 

Lower 
confidence 
limit for 95 
% certainty 
from 1st/2nd 
simulation 

Upper 
confidence 

limit for  
95 % cer-

tainty from 
1st/2nd simula

tion 
134119 100 130200 127900 132400 

 

Deviation 
MTTFMarko

v -  
MTTFMean 

(T)  
in % 

Deviation 
MTTFMarko

v -  
lower 

confidence 
limit for 

95 % 
certainty 

in % 

Deviation 
MTTFMarkov 

-  
upper 

confidence 
limit for  

95 % 
certainty in 

% 

Deviation 
MTTFMean -  

lower 
confidence 
limit for 95 
% certainty 

in % 

Deviation 
MTTFMean - 

upper 
confidence 
limit for 95 
% certainty 

in % 

-2,92 -4,64 -1,28 1,80 1,69 

 
It is determined here that with a certainty of 95 % the 
wanted MTTF value at time T = 5000000 hours exists 
within the time intervals [128200, 133500] hours and 
[127900, 132400] hours. For this simulation this means a 
maximum deviation of approximately 3 % respectively 
from the theoretical calculated MTTF value. Also the 
deviation of about 1,8 % respectively from the 
confidence limits to the MTTFMean value exists in a very 
good range. 
 
 
4   Conclusion 
This paper describes the calculation of MTTF-value via 
Monte-Carlo-Simulation. In order to minimise the 
deviation the following can be done: 

- an increase of the simulation cycles or 
- an increase of the simulation time. 

Then the results are comparable with the theoretically 
calculated value. For a sufficient proper estimation of the 
MTTF-value two distributions are used for 
determination of a confidence interval, the χ2-and the 
Student-distribution. Also here it is important, that better 
values involve using a higher number of simulation 
cycles and/or longer simulation time. As an example a 
2oo4-system is considered to calculate the system’s 
MTTF value. It is obtained less deviations corresponding 
to simulation cycles and simulation time with both 
distributions. The deviations range between 2 and 4 %.  
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