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Abstract: - This paper investigates redundant data transmission on binary symmetric channels without memory 
protected by a linear code and the probability of undetected error. A simple formula suitable for numerical calculations 
is proved, improving a commonly used formula. A second formula for data transmission without cross check is given. 
The formula is applied to some frequently used CRC-16 polynomials with well known minimum distance to calculate 
block lengths maximal in order to achieve a specific Safety Integrity Level (SIL). 
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1   Introduction 
Let there be given a binary symmetric channel without 
memory, a bit-error rate ε  and a transmission procedure 
protected by a linear code C (i.e. a checksum procedure). 
Imagine for example a cyclic redundancy check CRC. 
Not the only one but a good measure for the 
performance of the code is the probability of undetected 
error (see [9]): 

(1)           ( ) lnl
n

l
lue ACp −

=

−= ∑ εεε 1),(
1

where 

 

length block n 
yprobabilit error bit 

1) to equal bits of number   wordcode a of (weight
l  weightof  wordscode of number    

C of ondistributi  weightAl

=
=

=
=
=

ε

In case of a poor (large) bit error probability a frequently 
used method to improve the performance of C is 
redundant (μ-fold) data transmission together with cross 
check in the receiving device.  
  
  
2   Data Protection by the Use of Linear 
Codes and μ-fold Data Transmission 
Each code word or block consists of a message to which 
a checksum is attached: 
       )( 1-r0k1  s ,...,s , m ,...,mc =
Consider now a communication procedure transmitting 
each block twice and a linear code C performed 
separately on each of the two blocks. Further on, the 
receiving device is performing a cross check between 
both blocks (incl. both checksums). A block is accepted 

if only if there is no checksum fault and the two blocks 
inclusive checksum are identical. 
Mathematically spoken this means that we defined a new 
Code  consisting of the code words )2(C
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More generally: A μ-fold transmission procedure 
together with μ-fold protection by a checksum is 
characterized by a code  defined by its code words )(μC
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)(μC  has to be carefully distinguished from the 
Cartesian product  
              . },,:),,{( 11 CxxxxC ∈= μμ

μ ……
The elements of and  are typed in bold letters. )(μC μC
The problem is now to find a relationship between 
               .              ),(),( )(μεε Cp  and  Cp ueue

A commonly used formula for the probability of 
undetected error with redundant transmission is given by 
(see [2]): 
(3)         . μμ εε ),(),( )( CpCp ueue ≤
Normally deduced by heuristic arguments, equation (3) 
proves to be true. In section 3 we shall prove an exact 
formula for 
              ),( )(με Cpue

improving and implicating (3). The new formula too will 
be suitable for numeric calculations. 
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3 The Probability of Undetected Error 
 
 
3.1 The Main Result  
At first let us state our main result: Theorem 1 will give  
a formula for . ),( )(με Cpue

 
Theorem 1: The probability of undetected error of  
is given by 
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Proof: Let be code words then, in the course of 
the proof, we shall use some notations: 
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Then, by the formula of the total probability, we get 
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Corollary 1 states that the performance of the  code  
at a bit-error rate 

)(μC
ε  is at least as good as the 

performance of the code C at a bit-error rate of . με
 
Corollary 2: We have 
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Proof: By induction for μ = 1, 2, 3, ... we get 
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Corollary 2 is the well known result mentioned in 
section 2: 
 
Corollary 3: We have 
(6)          .),(),( )( μμ εε CpCp ueue ≤
Proof: Elementary calculus.                                             █ 
 
In the situation of Theorem 1 a code word is 
sent, and the checksum procedure together with the cross 
check guarantee that the received y again lies in . 
What happens if we only check whether y lies in the 
Cartesian product ? This means that only the 
checksums are verified and no cross check is done. One 
might expect, that (6) is true even without cross check. 
Unfortunately Theorem 4 states that this is not true. 
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Theorem 4: The probability of undetected error of  
is given by 
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Proof: Similar to the proof of Theorem 1 by means of 
the multinomial theorem we get:   

n
ue

n
Cx

n

l

nlnl
l

Cx Cy

Cx Cyy k
k

Cx xxCyy k
k

C C
ue

Cp

xpA

xpxxpxyp

xpxxpxyp

xpxyp

ppCp

⋅

∈ =

⋅−

∈ ∈

∈ ∈ =

∈ ∈ =

∈ ∈

−−+−=

−−−=

−=

−=

=

=

∑ ∑

∑ ∑

∑ ∑ ∏

∑ ∑ ∏

∑ ∑

μμ

μμ

μμ

μ
μ

μ

μ

εεε

εεε

ε

μ

μ
μ

μ μ

)1()),()1((

)())1())1(((

)())())(((

)())()((

)())((

)())((),(

0

,, 1

)},,\{(),,( 1

}\{

1

1

)(

…

……

x xy

xxy

 

                                                                                         █ 
 
In fact, (6) is not true for redundant transmission without 
cross check: 
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Theorem 4 is only of theoretical interest, because 
redundant transmission without cross check normally 
makes no sense. 
 
 
3.2 Safety Integrity Levels  
Let us now have a closer look at data integrity according 
to IEC 68508 and analyze the effect of redundant trans- 
mission on maximal block lengths feasible for a specific 
Safety Integrity Level (SIL). Our calculations are based 
on the results about three CRC-16 C1, C3 and C5 
generated by polynomials g1, g3 and g5 analyzed in [4].  
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C1 is optimal for a minimum distance (Hamming 
distance ) of d = 6, C3 is optimal for d = 5  and C5 is 
suitable for long block lengths. They are exemplary for a 
lot of other CRCs for which similar results are known. 
We did not check the rest of the CRC-16 treated in [4], 
because they are not proper for all block lengths, which 
means that ),( Cpue ε is not an increasing function of 

]2/1,0[∈ε . This means that a specific SIL being 
achieved for one ε  could be violated for another smaller 
one, and more detailed inspections would be necessary.  
According to IEC 68508 the quantity Λ  of undetected 
errors per hour is given by 
            1001)-(mCp3600 ue ⋅⋅⋅⋅ = υεΛ ),(  
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For  an example we decided to choose a relatively small 
ν  because for bigger ν  not all of the higher Safety 
Integrity Levels would be feasible. So for 1=ν  and 

, we get 1=m
(8)        ),(106,3 5 Cpue εΛ ⋅⋅=
If no details are known about the quality of the 
transmission especially about the electromagnetic 
compatibility (EMC) and nothing can be said about the 

bit error rate ε , the German TÜV requires to do all 
calculations concerning Λ  with . Therefore for 
our analysis we took account of this bad value of the bit 
error rate. With the help of (8) and Theorem 1 the con-
tent of tables 1, 2 and 3 can be derived from the results 
in [4]. For our calculations we used the so called worst 
case formula  
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where d is the minimum distance of the CRC, and the 
results on d published in [4]. 
The tables below list the block lengths maximal in order 
to meet a specific Safety Integrity level (SIL) with C1, C3 
and C5. Column 2  is taken from [8]. It contains the 
bounds on Λ for a specific Safety Integrity Level (SIL). 
Columns 3 and 4 contain the bounds on n for the single 
transmission mode respectively the double transmission. 
If the weight distribution of a code is completely known, 
better values of maximal block lengths are to be 
expected. Since the authors of [4] did not publish the 
weight distributions of their CRCs, we had to restrict our 
calculations to only making use of the minimum 
distances at different block lengths published in [4]. But 
for a demonstration of the effect of redundancy this 
should be sufficient.   
 
Table 1: Maximal block lengths for g1

SIL 
        Λ  
high demand

maxn for single 
 transmission 

maxn for single 
 transmission  

4         10-8           22          151 
3         10-7           22          151 
2         10-6           22          151 
1         10-5           23          151 

 
Table 2: Maximal block lengths for g3

SIL 
        Λ  
high demand

          maxn
single transm. 

           maxn
double transm. 

4         10-8           23          247 
3         10-7           24          257 
2         10-6           26          257 
1         10-5           26          257 

 
Table 3: Maximal block lengths for g5

SIL 
        Λ  
high demand

          maxn
single transm. 

           maxn
double transm. 

4         10-8           22           76 
3         10-7           27          126 
2         10-6           27          211 
1         10-5           27          353 

More results with various CRCs about the size of the 
undetected error probability and their minimum 
distances as a function of the block length can be found 
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in [1], [3], [5], [6], [7],and [10]. With all these results,  
tables similar to those presented here, can be derived. 
 

 

4   Conclusions 

This paper contains two formulas for the probability of 
undetected error of redundant data transmission 
protected by a linear code on the binary symmetric 
channel without memory. A normally used formula is 
improved. Using results in [4], the effect of redundant 
transmission on maximal block lengths for achieving a 
specific Safety Integrity Level is investigated. 
The results are suitable for numerical calculations. They 
can be applied to CRCs with known minimum distances 
at different block lengths.  
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