Probability of Undetected Error with Redundant Data Transmission on a Binary Symmetric Channel without Memory

BÖRCSÖK J., HÖLZEL J., WACKER H. D. Development HIMA Paul Hildebrandt GmbH + Co KG Albert-Bassermann-Strasse 28, D-68782 Bruehl GERMANY http://www.hima.com

Abstract: - This paper investigates redundant data transmission on binary symmetric channels without memory protected by a linear code and the probability of undetected error. A simple formula suitable for numerical calculations is proved, improving a commonly used formula. A second formula for data transmission without cross check is given. The formula is applied to some frequently used CRC-16 polynomials with well known minimum distance to calculate block lengths maximal in order to achieve a specific Safety Integrity Level (SIL).

Key-Words: - Linear Code, CRC, BSC, Probability Of Undetected Error, Bit Error Rate, Weight Distribution, Block length, Redundant Data Transmission, Cross Check, SIL

1 Introduction

Let there be given a binary symmetric channel without memory, a bit-error rate ε and a transmission procedure protected by a linear code C (i.e. a checksum procedure). Imagine for example a cyclic redundancy check CRC. Not the only one but a good measure for the performance of the code is the probability of undetected error (see [9]):

(1)
$$p_{ue}(\varepsilon, C) = \sum_{l=1}^{n} A_l \varepsilon^l (1 - \varepsilon)^{n-l}$$

where

 A_l = weight distribution of C

= number of code words of weight l

(weight of a code word = number of bits equal to 1)

 ε = bit error probability

n = block length

In case of a poor (large) bit error probability a frequently used method to improve the performance of C is redundant (μ -fold) data transmission together with cross check in the receiving device.

2 Data Protection by the Use of Linear Codes and μ -fold Data Transmission

Each code word or block consists of a message to which a checksum is attached:

$$c = (m_1, ..., m_k, s_0, ..., s_{r-1})$$

Consider now a communication procedure transmitting each block twice and a linear code C performed separately on each of the two blocks. Further on, the receiving device is performing a cross check between both blocks (incl. both checksums). A block is accepted if only if there is no checksum fault and the two blocks inclusive checksum are identical.

Mathematically spoken this means that we defined a new Code $C^{(2)}$ consisting of the code words

$$c = (m_1, ..., m_k, s_0, ..., s_{r-1}, m_1, ..., m_k, s_0, ..., s_{r-1})...$$

More generally: A μ -fold transmission procedure together with μ -fold protection by a checksum is characterized by a code $C^{(\mu)}$ defined by its code words

$$\boldsymbol{c} = (\underbrace{m_1, ..., m_k, s_0, ..., s_{r-1}, ..., m_1, ..., m_k, s_0, ..., s_{r-1}}_{\mu}),$$

that is

(2)
$$C^{(\mu)} = \{(\underbrace{x, \dots, x}_{\mu}) : x \in C\}$$

 $C^{(\mu)}$ has to be carefully distinguished from the Cartesian product

$$C^{\mu} = \{ (x_1, \dots, x_{\mu}) : x_1, \dots, x_{\mu} \in C \}$$

The elements of $C^{(\mu)}$ and C^{μ} are typed in bold letters. The problem is now to find a relationship between

$$p_{ue}(\varepsilon, C)$$
 and $p_{ue}(\varepsilon, C^{(\mu)})$

A commonly used formula for the probability of undetected error with redundant transmission is given by (see [2]):

(3)
$$p_{ue}(\varepsilon, C^{(\mu)}) \le p_{ue}(\varepsilon, C)^{\mu}$$
.

Normally deduced by heuristic arguments, equation (3) proves to be true. In section 3 we shall prove an exact formula for

$$p_{ue}(\varepsilon, C^{(\mu)})$$

improving and implicating (3). The new formula too will be suitable for numeric calculations.

3 The Probability of Undetected Error

3.1 The Main Result

At first let us state our main result: Theorem 1 will give a formula for $p_{ue}(\varepsilon, C^{(\mu)})$.

Theorem 1: The probability of undetected error of $C^{(\mu)}$ is given by

(4)
$$p_{ue}(\varepsilon, C^{(\mu)}) = \sum_{l=1}^{n} A_l \varepsilon^{\mu l} (1 - \varepsilon)^{\mu(n-l)}$$

Proof: Let $x, y \in C$ be code words then, in the course of the proof, we shall use some notations:

p(y|x) = probability that y is received,

provided x is sent

d(x, y) = Hamming distance between x and y

Then, by the formula of the total probability, we get

$$p_{ue}(\varepsilon, C^{(\mu)}) = \sum_{\mathbf{x}\in C} \left(\sum_{y\in C\setminus\{x\}} p(\mathbf{y}|\mathbf{x}))p(\mathbf{x}\right)$$

$$= \sum_{x\in C} \left(\sum_{y\in C\setminus\{x\}} p(y|\mathbf{x})^{\mu}\right)p(\mathbf{x})$$

$$= \sum_{x\in C} \left(\sum_{y\in C\setminus\{x\}} \varepsilon^{d(y,x)}(1-\varepsilon)^{n-d(y,x)}\right)^{\mu}\right)\frac{1}{|C|}$$

$$= \sum_{x\in C} \left(\sum_{y\in C\setminus\{x\}} \varepsilon^{\mu d(y,x)}(1-\varepsilon)^{\mu(n-d(y,x))}\right)\frac{1}{|C|}$$

$$= \sum_{x\in C} \left(\sum_{l=1}^{n} \sum_{y\in C} \varepsilon^{\mu l}(1-\varepsilon)^{\mu(n-l)}\right)\frac{1}{|C|}$$

$$= \sum_{x\in C} \left(\sum_{l=1}^{n} \sum_{y\in C} 1\right)\varepsilon^{\mu l}(1-\varepsilon)^{\mu(n-l)}\right)\frac{1}{|C|}$$

$$= \sum_{x\in C} \left(\sum_{l=1}^{n} A_{l}\varepsilon^{\mu l}(1-\varepsilon)^{\mu(n-l)}\right)\frac{1}{|C|}$$

Corollary 1 states that the performance of the code $C^{(\mu)}$ at a bit-error rate ε is at least as good as the performance of the code *C* at a bit-error rate of ε^{μ} .

Corollary 2: We have

(5)
$$p_{ue}(\varepsilon, C^{(\mu)}) \leq p_{ue}(\varepsilon^{\mu}, C).$$

Proof: By induction for $\mu = 1, 2, 3, ...$ we get

$$(1-\varepsilon)^{\mu} \leq 1-\varepsilon^{\mu},$$

and therefore we have

$$p_{ue}(\varepsilon, C^{(\mu)}) = \sum_{l=1}^{n} A_l \varepsilon^{\mu l} (1-\varepsilon)^{\mu(n-l)}$$
$$\leq \sum_{l=1}^{n} A_l (\varepsilon^{\mu})^l (1-\varepsilon^{\mu})^{n-l}$$
$$= p_{ue}(\varepsilon^{\mu}, C).$$

Corollary 2 is the well known result mentioned in section 2:

Corollary 3: We have

(6) $p_{ue}(\varepsilon, C^{(\mu)}) \le p_{ue}(\varepsilon, C)^{\mu}$. **Proof:** Elementary calculus.

In the situation of Theorem 1 a code word $x \in C^{(\mu)}$ is sent, and the checksum procedure together with the cross check guarantee that the received y again lies in $C^{(\mu)}$. What happens if we only check whether y lies in the Cartesian product C^{μ} ? This means that only the checksums are verified and no cross check is done. One might expect, that (6) is true even without cross check. Unfortunately Theorem 4 states that this is not true.

Theorem 4: The probability of undetected error of C^{μ} is given by

(7) $p_{ue}(\varepsilon, C^{\mu}) = ((1-\varepsilon)^n + p_{ue}(\varepsilon, C))^{\mu} - (1-\varepsilon)^{\mu \cdot n}$. **Proof:** Similar to the proof of Theorem 1 by means of the multinomial theorem we get:

$$p_{ue}(\varepsilon, C^{\mu}) = \sum_{x \in C^{(\mu)}} \left(\sum_{y \in C^{\mu} \setminus \{x\}} p(y|x) \right) p(x)$$

$$= \sum_{x \in C} \left(\sum_{(y_1, \dots, y_{\mu}) \in C^{\mu} \setminus \{(x, \dots, x)\}} \prod_{k=1}^{\mu} p(y_k|x) \right) p(x)$$

$$= \sum_{x \in C} \left(\sum_{y_1, \dots, y_{\mu} \in C} \prod_{k=1}^{\mu} p(y_k|x) - p(x|x)^{\mu} \right) p(x)$$

$$= \sum_{x \in C} \left(\left(\sum_{y \in C} p(y|x) \right)^{\mu} - p(x|x)^{\mu} \right) p(x)$$

$$= \sum_{x \in C} \left(\left(\sum_{l=0}^{n} A_l \varepsilon^l (1 - \varepsilon)^{n-l} \right)^{\mu} - (1 - \varepsilon)^{\mu \cdot n} \right) p(x)$$

$$= \left((1 - \varepsilon)^n + p_{ue}(\varepsilon, C) \right)^{\mu} - (1 - \varepsilon)^{\mu \cdot n}$$

In fact, (6) is not true for redundant transmission without cross check:

$$p_{ue}(\varepsilon, C^{\mu}) = ((1-\varepsilon)^{n} + p_{ue}(\varepsilon, C))^{\mu} - (1-\varepsilon)^{\mu \cdot n}$$
$$= p_{ue}(\varepsilon, C)^{\mu} + \sum_{k=1}^{\mu} \binom{n}{k} (1-\varepsilon)^{nk} p_{ue}(\varepsilon, C)^{\mu - k}$$
$$> p_{ue}(\varepsilon, C)^{\mu} \text{ for } \varepsilon < 1$$

Theorem 4 is only of theoretical interest, because redundant transmission without cross check normally makes no sense.

3.2 Safety Integrity Levels

Let us now have a closer look at data integrity according to IEC 68508 and analyze the effect of redundant transmission on maximal block lengths feasible for a specific Safety Integrity Level (SIL). Our calculations are based on the results about three CRC-16 C_1 , C_3 and C_5 generated by polynomials g_1 , g_3 and g_5 analyzed in [4].

$$C_{1}: g_{1} = x^{16} + x^{13} + x^{12} + x^{11} + x^{10} + x^{8} + x^{6} + x^{5} + x^{2} + 1,$$

$$C_{3}: g_{3} = x^{16} + x^{14} + x^{12} + x^{11} + x^{8} + x^{5} + x^{3} + x + 1$$

and

$$C_5: g_5 = x^{16} + x^{15} + x^{13} + x^9 + x^7 + x^6 + x^5 + x^3 + x + 1$$

 C_1 is optimal for a minimum distance (Hamming distance) of d = 6, C_3 is optimal for d = 5 and C_5 is suitable for long block lengths. They are exemplary for a lot of other CRCs for which similar results are known. We did not check the rest of the CRC-16 treated in [4], because they are not proper for all block lengths, which means that $p_{ue}(\varepsilon, C)$ is not an increasing function of $\varepsilon \in [0, 1/2]$. This means that a specific SIL being achieved for one ε could be violated for another smaller one, and more detailed inspections would be necessary.

According to IEC 68508 the quantity Λ of undetected errors per hour is given by

$$\Lambda = 3600 \cdot p_{ue}(\varepsilon, C) \cdot \upsilon \cdot (m - 1) \cdot 100$$

where

v = number of safety related messages per second

m = number of communicating devices

100 = 1% - rule

For an example we decided to choose a relatively small ν because for bigger ν not all of the higher Safety Integrity Levels would be feasible. So for $\nu = 1$ and m = 1, we get

(8)
$$\Lambda = 3,6 \cdot 10^{\circ} \cdot p_{ue}(\varepsilon,C)$$

If no details are known about the quality of the transmission especially about the electromagnetic compatibility (EMC) and nothing can be said about the

bit error rate ε , the German TÜV requires to do all calculations concerning Λ with $\varepsilon = 10^{-2}$. Therefore for our analysis we took account of this bad value of the bit error rate. With the help of (8) and Theorem 1 the content of tables 1, 2 and 3 can be derived from the results in [4]. For our calculations we used the so called worst case formula

$$p_{ue}(\varepsilon,C) = \sum_{l=d}^{n} {n \choose l} \varepsilon^{l} (1-\varepsilon)^{n-l},$$

where d is the minimum distance of the CRC, and the results on d published in [4].

The tables below list the block lengths maximal in order to meet a specific Safety Integrity level (SIL) with C_1 , C_3 and C_5 . Column 2 is taken from [8]. It contains the bounds on Λ for a specific Safety Integrity Level (SIL). Columns 3 and 4 contain the bounds on n for the single transmission mode respectively the double transmission. If the weight distribution of a code is completely known, better values of maximal block lengths are to be expected. Since the authors of [4] did not publish the weight distributions of their CRCs, we had to restrict our calculations to only making use of the minimum distances at different block lengths published in [4]. But for a demonstration of the effect of redundancy this should be sufficient.

Table 1: Maximal block lengths for g_1

SIL	Λ	$n_{\rm max}$ for single	$n_{\rm max}$ for single
	high demand	transmission	transmission
4	10-8	22	151
3	10-7	22	151
2	10-6	22	151
1	10-5	23	151

Table 2: Maximal block lengths for g₃

SIL	Λ	n _{max}	n _{max}
	high demand	single transm.	double transm.
4	10-8	23	247
3	10-7	24	257
2	10-6	26	257
1	10-5	26	257

Table 3: Maximal block lengths for g₅

SIL	Λ	n _{max}	n _{max}
	high demand	single transm.	double transm.
4	10-8	22	76
3	10-7	27	126
2	10-6	27	211
1	10-5	27	353

More results with various CRCs about the size of the undetected error probability and their minimum distances as a function of the block length can be found in [1], [3], [5], [6], [7], and [10]. With all these results, tables similar to those presented here, can be derived.

4 Conclusions

This paper contains two formulas for the probability of undetected error of redundant data transmission protected by a linear code on the binary symmetric channel without memory. A normally used formula is improved. Using results in [4], the effect of redundant transmission on maximal block lengths for achieving a specific Safety Integrity Level is investigated.

The results are suitable for numerical calculations. They can be applied to CRCs with known minimum distances at different block lengths.

References:

- [1]Baicheva, T., Dodunekov, S., Kazakov, P., Undetected error probability performance of cyclic redundancy-check codes of 16-bit redundancy, IEE Proc.- Commun., Vol. 147, No. 5, October 2000.
- [2]Berufsgenossenschaft der Elektrotechnik und Feinmechanik, Fachausschuss Elektrotechnik, SCHLUSSENTWURF Vorschlag eines Grundsatzes für die Prüfung und Zertifizierung von "Bussystemen für die Übertragung sicherheitsrelevanter Nachrichten", Köln 2001
- [3]Castagnoli, G., Braeuer, S. & Herrman, M., *Optimization of Cyclic Redundancy-Check Codes with 24 and 32 Parity Bits*, IEEE Trans. on Communications, Vol. 41, No. 6, June 1993.
- [4]Castagnoli, G., Ganz, J. & Graber, P., Optimum Cyclic Redundancy-Check Codes with 16-Bit Redundancy, IEEE Trans. on Communications, Vol. 38, No. 1, 1990, pp. 111-114.
- [5]Fujiwara, T., Kasami, T., Lin, S., Error Detecting Capabilities of the Shortened Hamming Codes Adopted for Error Detection in IEEE Standard 802.3, IEEE Trans. on Communications, Vol. 37, No. 9, Sept. 1989.
- [6]Fujiwara, T., Kasami, T., Lin, S., On the Undetected Error Probability for Shortened Hamming Codes, IEEE Trans. on Communications, Vol. COM-33, No. 6, Sept. 1985.
- [7]Funk, G., Determination of Best Shortened Linear Codes, IEEE Trans. on Communications, Vol. 4, No. 1, Jan. 1996.
- [8]IEC 61508, International Standard 61508: Functional safety of electrical/electronic/ Programmable electronic safety-related systems, Geneva, International Electrotechnical Commission, 2000
- [9]W. W. Peterson, E. J. Weldon, *Error Correcting Codes*, The MIT Press Cambridge, Massachusetts, and London, England, Second Edition 1972..

[10]Wolf, J.K., Blakeney, R.D., An exact Evaluation of the Probability of Undetected Error for certain Shortened Binary CRC Codes, Qual.Comm, Inc., San Diego, CA 92121. Proc. Milcom IEEE 1988.