
Software projects improvement using PSP: an approach for a R&D
center

IÑAKI ETXANIZ

Infotech Unit
Robotiker

Parque Tecnologico, E-48170 Zamudio
SPAIN

 http://www.robotiker.com

Abstract: - Extra unofficial hours to maintain the budget, working late to finish on time, project scope
renegotiations when we are on the limit, all are things that most software engineers know about to save their
projects from failing. When thinking about software process improvement, several methodologies can be found
on the literature. In this paper, we will show the application of these tools in a specific case: a R&D centre
where, despite the existence of a quality culture and procedures, software projects suffer from the same general
illness of over-budgeting and delaying. The method we propose is based in the Personal Software Process (PSP),
which differs from others – generally more focused on the company’s general structure and organizational
issues- in that it deals with the individual work of the developer. Based on previous experiences on the use of
PSP and taking into account the particular characteristics of the workplace, a tool is proposed and described.

Key-Words: - Personal Software Process, Improvement, Methodology, Quality, Defects, Size, Estimation.

1 Introduction
On 1994, the Standish Group published its famous
“The Chaos Report” [1] where was stated that only
16 percent of the project were successful, while 31
percent fail and 53 percent had serious problems,
suffering over-budget and with an average of 189
percent of delay from the scheduled dates. On year
2000, things improved a bit, but still there was a little
to be proud of [2] (Figure 1).

Fig. 1 Project success history, from [2]

Several initiatives have attempt to improve this scene.
For example, the Capability Maturity Model (CMM),
which was developed by the SEI at the Carnegie
Mellon University, or the ISO 9000 standard. The
CMM emphasize the software development process
control. Some authors dislike it, signaling that this

model is like a bureaucratic layer destined to force
the developers into rigid institutional environments.
An experience with the CMM introduction show that,
although a lot of hours where employed defining key
areas in the company, the result was a developer
manual reflecting only vaguely how things where
done in reality, and that was forgotten as fast as it
was distributed to the staff.
The Standard ISO 9000 is based in the proposition
that if one documents his processes and audit them to
correspond with real activities, an environment is
created where everyone understand the procedure she
has to follow for every activity. Really, in many
cases, the documents are maintained only to satisfy
the auditors, and keep little relation with the activities
the engineers follow day by day.
On the contrary, the PSP focuses on the personal
responsibility as mandatory for good working. It is
said, also, that this model syntonizes better with our
type of culture and with programmers’ work -where
the individualism prevails over the association- than
top-down models like ISO 9000 and CMM [3].

1.1 Problems with the Management
The projects face problems since the beginning.
Many of these problems come from outside the team,
as too ambitious dates by the management, last hour
changes of the scope by the client, or not enough
resources. But not all problems can be attributed to
the outside; many of them come from inside.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 60

According to the 10 critical success factors of a
project [4], several of them are related with the
software development process improvement. That is
to say, in order of relative importance:
√ Good Planning of the project (factor 3)
√ Correct technical development (factor 6)
√ Precise tracing (factor 8)
Although more focused to big software projects,
Humphrey comments [5] that these are intrinsically
different from traditional hardware projects, as in the
case of construction or engineering. The main
difference among them concerns management
visibility. In manufacturing, armies or traditional
hardware, the managers can walk through the factory,
battlefield or laboratory and observe how things go.
However, with a team of software development, one
cannot tell what they are doing by simply watching.
But the problem is not only to know where the
project stands, but in the planning itself. In spite of
using several technical tools like PERT or Gantt
charts, project managers do not know enough about
the work to formulate detailed plans. Although
intermediate milestones are clear (finalized
specifications, finalized design and similar) usually
we do not known clearly when these high level tasks
have finished. The requirements work continues
during the design, the codification and even into the
test, coding habitually starts well before completing
the design, etc. That is why plans usually are very
generic, as to provide the developers the flexibility to
make a creative work. This system would then be the
present version equivalent to the one used in the
Middle Ages to construct the cathedrals [6], where
the developers act like craftsmen, who manage
themselves under the guidance of a builder master.

1.2 Problems with the software
A great quantity of errors is introduced in a typical
software product. The work to find and fix the errors
by means of tests consumes a lot of time -sometimes
half of the total development time. But tests only
found a part of the mistakes (50 percent is considered
a good achievement in the software industry). Some
data to remark [7] is:
√ To find and fix a software problem after delivery

is up to 100 times more expensive than during the
requirements and development phases.

√ Between 40 and 50 percent of the effort is spent in
rework.

√ Personal disciplined practices can reduce the
defect introduction in a 75 percent.

The PSP helps engineers to detect mistakes early in
the process, and since it implies much less effort than
to detect them later, the cycle duration decreases and
the quality of the final product increases. [8].

The rest of the article is organized as follows: section
2 presents a summary of the PSP. Section 3
introduces the characteristics of the studied work
center. Previous experiences related to the use of the
PSP are presented in the section 4, whereas in section
5 our PSP-based improvement proposal is described.
In the last section we present some conclusions.

2 Overview of the PSP
The Personal Software Process, developed by Watts
Humphrey in the Carnegie Mellon University in
1995, has as principal aim the introduction of a
certain discipline in the software development
process. The model was developed in response to the
observation that CMM focused in what the
organizations should do, but not in how to do it. Also,
an imputation to CMM was that it is not easily
applicable to small organizations. Its design is based
in the following principles of planning and quality:
√ Every engineer is different; so, to be more

effective, engineers must plan their work and base
their plans on their own personal information.

√ To constant improve their work, engineers must
use well defined and measured processes.

√ It costs less to find and fix the defects early that
later in the process.

√ It is more efficient to anticipate defects that to
find them and to fix them.

To understand his personal performance, engineers
must measure the time that they spend in every
process, the defects they introduce and remove, and
the size of the products they produce. Finally, they
must analyze the results of every work and use them
to improve his personal processes.

2.1 PSP process structure
At the start of the PSP process is the planning phase,
having as an input the requirements, which are
defined with the help of the client. To calculate size,
the engineer first determines the objects needed to
construct the product. Then they establish the
probable type and the number of methods for every
standardized object.
While the engineers do their work (design, code,
test…), they record time and defects measures in the
corresponding forms.
In the postmortem phase, the engineers actualize their
historical data bases. The real size of the program is
measured and a summary of the information is joined
into the plan-summary form Also, they revise the
defects found in compilation and tests, and update
their personal review-checking lists to help them to
find and fix similar defects in the future. With the
personal historical information of size and

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 61

productivity, the engineers can better estimate in the
future.

Fig. 2: PSP process flow, from [9]

2.2 PSP measures
During the PSP process fulfillment, three types of
measures are carried out: time, defects, and size. All
the PSP's metrics are devised form them.
Time is stored in the time form, where you have to
annotate the beginning of every task, the ending time,
and any interruption interval (a telephonic call, for
example). Time metrics are critical to estimate the
programming time and calculate the productivity.
Defects are annotated in the corresponding record.
Each defect is described by a type (Humphrey defines
10 standard defect types) followed by a textual
description, the development phase in which it was
introduced, the phase in that was corrected, the time
invested correcting it and, finally, it is indicated if it
was introduced during the fixing of another defect.
Defects can dwell in the code, in designs, or even in
the requirements or the rest of documentation.
Whereas the lines of code (LOC) are the habitual
measurement of size in PSP, any size measurement
that provides a reasonable correlation between the
development time and the size of the product can be
used. It is important to consider several LOC's
categories, like Base, Added, Modified, Eliminated,
etc.

2.3 Quality through the PSP
The PSP data demonstrates that even experienced
programmers inject a defect into every seven or ten
lines of code [10]. The main quality objective in PSP
is to find and fix defects before the first compilation.
The PSP includes steps as design review and code
review, where engineers personally check their work
result before it is revised, compiled or tested.
The principle behind this review process is that the
developer tends to repeatedly incur in the same
mistakes. Therefore, analyzing the information about

defects that one has introduced, and constructing a
check-list of the actions needed to find these
mistakes, the engineers can find and fix defects in a
form as efficient as possible.

3 Related work
Hayes and Over realized a study [10] on the
performance of 298 participants in a SEI official PSP
course. Results showed a substantial improvement in
the engineers performance, measured in four
dimensions: the size estimation precision, the effort
estimation precision, the quality of the product
(density of defects) and the quality of the process
(early elimination of defects), at the time that it does
not significantly concern the productivity.

3.2 Extra effort
As a result of its application in a company of 25
developers [11], it is declared the difficulty that the
PSP introduction brings in, on having had to annotate
the quantity of interruptions and all the evasions of
the normal tasks. Besides, it can be considered a way
of spying the developers and measuring his
productivity by the management.
Being the PSP a manual process, it requires the
engineers to handle a considerable number of forms
where to introduce all the significant information on
effort, defects, sizes and times (up to 3.300 fields
throughout an entire project, if we include all the
forms used in the maximum level of PSP's
application -level 3.0-). Though the use of tools
reduces the needed extra work, it does not eliminate it
completely.

3.3 Data Quality
In another study [12] there is demonstrated that the
ordinary process in PSP and its manual utilization
causes a series of mistakes in the information
introduction and analysis. As a result, the conclusions
on the improvement that the programmers using the
PSP experience can be contaminated by these
mistakes, in some way inherent to the methodology.
Among the conclusions, we emphasize the need to
rely on an integral tool that supports PSP, which
would give the necessary quality to the information
and would reduce the required effort to use it.

3.4 LOC and program size
The use of the number of Lines of Code (LOC) to
estimate the size of a software application is very
widespread, though it has also some detractors. In a
study realized at a PSP course, it is suggested that this
measure is the cause of many software projects being
poorly estimated. It is defined as an intrinsically

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 62

ambiguous, vague and inconvenient indicator of the
size of the software [13], having sometimes a
variation superior to an order of magnitude.
Furthermore, for modern programming languages,
using buttons and controls in the user interface, nor
the physical lines not logical declarations are
relevant. [14]
Some alternatives have been proposed, as the
Function Point Analysis (FPA), which presents
different variants, or the object categorization.
The problem of measuring the size is complicated
because in the PSP you have to count not only the
final size of the program, but discriminate among
original, added, re-used or modified lines, and others.

4 A real industrial environment
The company for which the improvement process has
been designed is a technological center, founded in
1985, and that nowadays employs approximately 180
members. Its principal mission is to provide R+D+I
(Research, Development and Innovation) services to
the companies in the region.
It executes more than 150 R+D projects per year, for
more than 130 companies, besides more than 20
internal auto-financed R+D projects. Along its
history, the company has taken part in more than 80
European Community founded projects, having
approximately 20 active nowadays.
Regarding the software development, almost all the
internal units produce some type of software, being
one of them - Information Technologies- dedicated
mainly to this activity, with a varied application
typology: software for embedded systems, for
electronic elements, process supervision programs,
artificial vision, telecommunications, web
applications, software for handhelds (PDAs), etc.

4.1 Quality System
The processes quality has always had great
importance in the strategy of the company. It is ISO
9000 certified since 1997 for the software and
hardware development processes. The process-based
management was established in 2000, and in 2002 the
Silver Q (a distinction that the regional Basque
Government grants to the companies that obtain
4.000+ points in the EFQM-European Foundation for
Quality Management model) was obtained.
The projects have to be conducted according to a
Project Management Manual, which contemplates
the steps to generate a project, its planning, control
and follow-up, ending and documentation.
To allow this organizational scheme and support the
implied procedures, the company has provided itself
with some internal tools for quality management.

The first one (GESIP) takes charge of the projects’
control and follow-up: budget, schedule, work team
members, number of hours assigned to each one,
planning, and monthly report of hours and resources
consumed in the project. It also generates
management reports and control diagrams used to
monitor commercial activities as well as the
economical details (see figure 3).

Fig. 3: Hour Imputation Module in the GESIP tool.

The second one (SPRINT) provides a documentary
support to the projects, and a workflow system to
organize and automate the day to day work processes.

4.2 Software development standards
The internal Manual for Software Development
Projects focused to a quality work, defines the
software development cycle to be used, contemplates
the documents and guides needed for such a project
type (Requirements, Design, Tests, etc).
Nevertheless, in spite of this effort in introducing and
using a methodology focused on the quality, of
having own-developed and external tools that
support it, and of having a qualified human staff, a
considerable part of the software development
projects –and others- continues finishing out of date
and over the estimated cost.
Regarding this, we emphasize two reasons for due
date delays, from an internal Improvement Group:
√ Mistakes of planning in the offer (number 5):

attributed, among other reasons, to the lack of
information on which to base the prediction.

√ Not programmed tasks (number 10): interruptions
of the daily work, unforeseen, visits, urgencies,
etc.

5 Proposal
In order to improve the process, we propose here
some PSP elements to include, along with an
implementation method and the resulting tool. The

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 63

data gathered in the PSP methodology can be
classified in two categories:
√ Primary: size, time and defects data, that is

independent and previous to any other data; it
cannot be obtained from analysis or calculations.

√ Secondary: information that stems from the
primary information. For example, efficiency in
the defect fixing, total time spent, etc.

The tool must be capable of gathering so much
primary information as possible, whereas the
secondary information is automatically calculated and
presented to the user in tables or in forms.

5.1 Functionality and integration with the
Quality System
It seems clear that the principal objection to the PSP
is that it introduces a considerable quantity of extra
work, still more if the process is done manually. The
fundamental idea is, then, to rely on a tool that should
facilitate and automate as much as possible the
information gathering and processing, minimizing at
the same time the introduced changes in the habitual
procedures.
To achieve this, we propose to develop a software
module to be attached to the GESIP tool, used
nowadays for project management, people
assignment, resource management, follow-up, etc.
The tool would present menu options to accede to the
several data forms to be used in the PSP. The
appropriate information fields will then be presented
to the user in an electronic manner, to permit first to
introduce new data about the project and, second, to
consult historical information in order to perform
good estimations in new projects.

5.1.1 Time
Concretely, in the hour imputation module the user
introduces, nowadays, the hours employed at every
task of any project he is working on, with a minimal
daily periodicity. To manage the time data input as
PSP requires, it would be enough to extend this
functionality to allow the introduction of multiple
daily inputs in each task. Even better is to use a
chronometer as an added functionality. This way the
real working time for each task will be calculated,
and the interruptions easily filtered.
It is enough to press a button (Start / Pause / Stop) in
a graphical interface in order to permit the worker to
forget about watching the clock and annotating the
exact time. Nevertheless, the time data itself is not
enough if it is not tied to the task that the user is
working on. This relationship is facilitated, in our
case, by the existing tool, which allows in the
planning phase to divide a project in tasks and sub-

tasks, and afterwards to impute working hours
separately to each one.

5.1.2 Size
The size information is more difficult to handle. To
begin with, neither the traditionally used LOC, nor
the categories of objects, nor the FPA seem to have a
sufficient consensus. Nevertheless, size is a basic
information when planning the effort needed to
perform the project.
Then, we have chosen to use a simple approach: to
use only one LOC measure per program -Total LOC-
that the user will introduce by hand in the
corresponding e-form. No tool is considered for an
automatic LOC count, given the heterogeneity of
languages and environments used. Besides, the
majority of today’s development tools include this
capability.
For size management, a module would be added so
that a final size could be assigned, in the planning
phase, to every task. Adding this size up for all the
tasks and all the participants would give us the total
project size. Additionally, a window would exist in
which to define new categories for objects, if desired.
Every task might then be defined -a posteriori for
finished projects, a priori for the new ones- in terms
of these personal objects.

5.1.3 Defects
For defect management we define an electronic form
based on the standard PSP form, which gives the
possibility to enter founded defects, to assign them
one of the already defined types, the time spent
repairing it and the phase of introduction/repair (the
latter might be automatically filled, given the
planning of the project and the task the user is
working on). The phases that PSP uses -
requirements, design, codification, etc- are mainly
defined in the Software Development Projects
Manual used in the company, so there is no problem
incorporating this information into a form.
Concerning the type of defect, the user will be able to
extend or modify the standard PSP categories,
attending to the concrete circumstances of his current
work. The tool will facilitate the automatic
numeration of defects and the link between them, as
reflected in the defects form. The historical
information will serve to infer the estimated quantity
of injected defects of each type in every phase, which
PSP uses in a new project planning.

5.1.4 Security and more
The privacy of the user information is also important
in order for the tool to be really successful. First, the
access to the system needs a private key that

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 64

authenticates the user. Second, the PSP information
of every user should be kept separated from the
information of the others, and only the owner can
accede to his data. Nevertheless, to facilitate the
group work on the same project, the user is able to
"publish" his information anonymously. This would
permit group statistics, or defect sharing so that one
helps the others to anticipate the most common
defects or even facilitate to find the solution of a
difficult defect among several coworkers.
A built-in help option gives the user access to the
different scripts, procedures and directives that the
PSP offers (PSP process script, design-review
checking list, code-review checking list, etc). This
facilitates the programmer to follow the correct steps
in every phase.

6 Conclusions
Although the introduction of process improvement,
like the PSP, is not very extended among the software
development companies -especially in those of small
and medium size- the benefits of its application are
evident in the light of the commented experiences.
Generally, these methodologies try to systematize the
general processes of the companies, without too
much repairing in the developer at the end of the
chain. The PSP, in turn, affects just to the quality of
the individual work of the software engineer.
The principal factors that obstruct the introduction of
the PSP are the extra work that supposes the
exhaustive information gathering of the methodology;
the large amount of forms to be used; and the
suspicion that the personal productivity information
can be used to some form of evaluation of the
workman.
We have analyzed the characteristics of one concrete
SME: a center of R&D where software is produced
and where, although using already some quality
systems, they present the same problems of schedule
and costs than in the rest of development companies.
We have defined an implementation of the PSP
methodology adapted to the center peculiarity,
bearing in mind previous experiences and trying to
overcome the difficulties. The principal contribution
is the design of a tool to support the PSP, integrated
in the quality process existing in the center.
Finally, we expose four areas to work in the near
future to develop these ideas.
1. To improve the tool by means of a deeper
analysis. Possible new functionalities to be added are:
graphical presentations; an additional timer to
measure the time used fixing each defect; provide
some “intelligence” to the tool so as to warn the user
if his productivity is low or he is out of dates.

2. To try the tool in some pilot projects of the
company. The results of the experience would be
important to decide the introduction of the PSP
methodology in the whole center or, otherwise, the
modification in those deficient or inadequate aspects.
3. To extend the PSP method with elements of
agile development technologies, like XP, Scrum, etc.

References:
[1] The Standish Group International, Inc, The Chaos

Report, 1994
[2] The Standish Group International, Inc, Extreme

Chaos, 2001
[3] Keuffel, Warren, Coding Cowboys and Software

Processes, Crosstalk, the Journal of Defense
Software Engineering, August 1997

[4] Pinto, J.K., Slevin, D.P., Critical Success Factors
in Successful Projects Implementation, IEEE
Transactions on Engineering Management, Vol.
34, No.1, 1977

[5] Humphrey, Watts S., Why Big Software Projects
Fail: The 12 Key Questions, Crosstalk, the
Journal of Defense Software Engineering, March
2005

[6] Raymond, Eric S., The Cathedral and the Bazaar,
Cambridge, MA: O’Reilly Publishers, 1999

[7] Boehm, B., Basili, V.R., Software Defect
Reduction Top 10 List, IEEE Computer, January
2001

[8] SEI, Carnegie Mellon University, Pursue Better
Software, Not Absolution for Defective Products,
news@sei interactive, March 2001

[9] Humphrey, Watts S., Introduction to the Personal
Software Process, SEI Series in Software
Engineering. Addison-Wesley, 1987

[10] Hayes, Will and Over, James W., The Personal
Software Process (PSP): An Empirical study of
the Impact of PSP on Individual Engineers,
Technical report, CMU/SEI-97-TR-001,
December 1997

[11] Hemdal, J. Erik and Galen, Robert L., PSP-A
few unexpected lessons, RTP-SPIN Meeting
Presentation, Feb 2000

[12] Disney A., Johnson P., Investigating Data
Quality Problems in the PSP (Experience Paper),
Sixth International Symposium on the
Foundations of Software Engineering
(SIGSOFT'98), Orlando, FL., November, 1998

[13] Schofield, Joe, The Statistically Unreliable
Nature of Lines of Code, Crosstalk, the Journal of
Defense Software Engineering, April 2005

 [14] Jones, C., Software Quality, International
Thomson Computer Press, 1997: 333

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 65

