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Abstract: - It is common to use classifiers on polisomnographic records in order to determine the different stages 
during sleep. Most of the times the results yielded by this systems are not coherent with physiological aspects of 
the sleep. This work uses the Hidden Markov Models as a modeller of the physiological act of sleeping, and uses 
it as a corrector of the classification yielded by an artificial neural network. It has been tested on 
polisomnographic records from the MIT database. Results confirm an improvement of  0,17± 0,05 in the Kappa 
coefficient of agreement and an improvement of 12,51±4,09% in success during test set.   
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1   Introduction 
The classification of sleep stages is an important 
issue in medical diagnosis because some serious 
diseases are accompanied by typical sleep disorders. 
Different physiological signals such as 
electroencephalogram (EEG), electrooculogram 
(EOG), electromyogram (EMG), etc., have to be 
recorded during night sleep [1]. These data are 
visually scored/annotated by an expert and the results 
displayed in the form of a  hypnogram, sampled in 
intervals of 30 seconds  
     Sleep scoring and the construction of a hypnogram 
is a very laborious and time-consuming task: the 
paper from an 8 h EEG recording is over 400 m long 
[2]. It can require several hours of hard work by 
highly qualified specialists. Moreover, human 
expertise, which can vary between individual experts, 
is also mostly inconsistent over such periods of 
continuous work. Kemp et al. [3] report that the 
agreement between 6 human experts does not exceed 
75%. Hence, a program capable of automatic sleep 
staging is highly desirable [4]. 
     The sleep stage scoring (sleep classification) is 
based on the rules of Rechtschaffen and Kales (RK) 
[5] for adults. It is possible to distinguish three 
distinct conditions of consciousness. Conciousness 
can be classified into wakefulness and sleep. Sleep is 
subdivided into REM sleep and non REM sleep. This 
NREM sleep is again subdivided into stage 1 (S1), 
stage 2 (S2), stage 3 (S3) and stage 4 (S4).  

    This sleep classification can be aided with 
mathematical models and usually classical or 
statistical methods are used [6]. However, reactions 
that occur in the human body are much more complex 
than those simulated by theoretic equations, which 
often do not match the underlying hypothesis. 
     These limitations can be alleviated by using 
artificial neural networks (ANNs); they are nonlinear 
regression models in which no previous knowledge of 
the problem is needed and it is not strictly necessary 
to assume any specific relationship between variables 
[7]. These features provide higher versatility and 
generalization performance than classical methods 
do. For the last years, a great amount of applications 
have been developed [6]. 
     The multilayer perceptron (MLP) has been widely 
used in the last years. MLP is, in fact, a nonlinear 
generalization of the Logistic Regresion [8] and 
achieves, in general, better results [6] An MLP is 
composed of a layered arrangement of artificial 
neurons in which each neuron of a given layer feeds 
all the neurons of the next layer. The first layer 
contains the input nodes, which are usually fully-
connected to hidden neurons and these, in turn, to the 
output layer [7].  
     The sleep classification should be, using whatever 
automatic classifier, as accurate as posible and, a key 
condition, be consistent with medical criteria. 
Markov processes are used to model human sleep 
structure [9]. Markov models are part of the 
mathematical procedures used for formal decision 
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analysis. A Markov process is a system that consists 
of a finite number of mutually exclusive and 
collectively exhaustive states, meaning that at any 
given time each person must be in one of those states, 
and cannot be in more than one state at the same 
time[10]. The sleep process itself fulfils several 
properties that facilitate the application of Markov 
models for the modelling of human sleep. Markov is 
a state transition models (Fig. 1).      
 

 
Fig. 1. Representation of a Markov Model in which 
every state represents a sleep stage. The sleep is 
divided into 30 second segments and each segment is 
classified into one of six mutually excluding states: 
Wake, S1, S2, S3, S4 and REM.  
 
    In this paper the use of Hidden Markov Model 
(HMM) to model the dynamics of  sleep stages is 
proposed. This modelling will be used to verify the 
consistence of the ANN output with the medical 
model. This function is achieved due to the 
characteristic of the HMM to assign every state with 
an output value. 
 
 
2   Data and preprocessing 
Amongst the common biosignals that can be acquired 
from a patient, it is considered that EEG, EMG and 
EOG are those that contain more interesting 
information for a sleep analysis [11]. Therefore, it is 
very convenient to work with records that contain 
these three types of signals for sleep processing. Data 
used in this paper are polisomnographic records from 
the MIT-BIH database [12]. These records are the 
ones labelled SLP32, SLP37, SLP37, SLP37, which 
contain EEG, EMG and EOG, and besides signals of 
blood pressure, breath signal sensed with nose 
thermistor and breath effort signal sensed with 
pletimography on the chest. 
     Every record is annotated by experts with 7 
annotations S={W, 1, 2, 3, 4, R, MT}, corresponding 
respectively with the states of subject is awake, sleep 
stage 1, sleep stage 2, sleep stage 3, sleep stage 4, 
REM stage and movement time. 

 
 
2.1   Feature selection 
The human expert, when assigning a sleep stage to a 
data time interval, knows perfectly which are the 
feature to be observed before making the 
classification. In a similar way, the automatic 
classifier should observe a set of characteristics, 
which enable it to assign sleep stages to epochs. The 
result of this selection process is called feature vector.  
     There are many possible features to choose to 
implement a classifier of sleep stages. The following 
one have been selected for this work [4]: 
     EEG:  
•Relations between the power of the bands d [0-4Hz], 
? [4-8Hz], a [8-13Hz], ß1 [13-22Hz], ß2 [22-35Hz] 
and all the band [0-35Hz] in EEG. 
•Overall power in the band [0-35Hz] in EEG. 
•Relation between the power of the d and ? bands. 
•Relation between the power of the a  and ? bands  
•Average frequency of the spectral density of EEG. 
•Standard deviation of the spectral density of EEG. 
     EOG: 
•Relations between the power of the band [0-4Hz] 
and all the band [0-30Hz] in EOG. 
•Average frequency of the spectral density of EOG. 
•Deviation of the spectral density of EOG. 
     EMG:  
•Overall power in the band [10-45Hz] in EMG. 
•Average frequency of the spectral density of EMG. 
•Deviation of the spectral density of EMG. 
 
     The features related to EEG help to determine the 
predominant rates. Characteristics regarding EOG 
help to determine the ocular speed to detect REM 
(Rapid characteristic Eyes Moviment) stage. 
Characteristics regarding EMG detect if exists 
muscular activity, and thus distinguish between REM 
stage and wakefulness. 
 
 
2.2 Preprocessing 
The medical experts follow the RK classification 
criterion settled for 30 seconds epochs [5]; thus the 
data of the record to be classified by the automatic 
classifier must be of the same length:  
     1) Signal is split in parts of 2 seconds length for 
ensure stationarity. 
     2) Spectrum of EEG, ECG and EOG is calculated 
for every time interval. 
     3) Features formerly selected are obtained from 
the biosignal spectrum and they are average in order 
to obtain a feature vector representative of the 30 
second length. 
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3 Method 
 
3.1 Sleep stage detection 
It has been decided to use an artificial neuronal 
networks, namely multilayer perceptron, as the 
classifier for the discrimination of the sleep stages, 
because its well-proved excellent performance [7]. In 
order to verify the performance of the classifiers the 
data set has been divided in sections of 20 samples; 
2/3 of the sections have been selected for training, 
and the remaining third, has been used solely as test, 
not for cross-validation. 
     The layout of the ANN consists of 17 inputs 
neuron, 12 hidden neurons and 7 output neurons. 
Learning in the ANN has been carried out using the 
optimization algorithm of Levenberg-Marquardt [13]. 
Training has been stopped at epoch 100. 
 
 
3.2 Hidden Markov Models. 
A Markov chain contains the following elements: 
•A set of states S={S1, S2, ..., SM} 
•An M-by-M transition matrix T(i,j) whose i, j entry 
is the probability of a transition from state Si to state 
Sj.  
•A set of possible outputs, or emissions, O={O1, 
O2,... ,ON}  
•An M-by-N emission matrix E(i,k) whose i,k entry 
gives the probability of emitting symbol Ok given 
that the model is in state Si. 
     When the model is in state Si, it emits an output 
Ok with probability E(i,k). The model then makes a 
transition to state Sj with probability T(i,j), and emits 
another symbol.  
     In this paper, 7 states have been defined, 
corresponding to the annotations of the experts 
S={W, 1, 2, 3, 4, R, M} in the database, and the ANN 
outputs are mapped to classes O={W, 1, 2, 3, 4, R, 
M}. The transition matrix T contains the probabilities 
of stage changes in the patient records. Once the 
ANN has been fully trained, the emission matrix E 
reflects its performance, because it contains the 
probabilities of true and false classification for each 
class. 
     An estimation of the probabilities of stage 
transition has been used to figure out T, using the 
annotations of the four records in the database. The 
calculation of matrix E is easier, because it coincides 
with the ANN confusion matrix (normalized for 
every class).  
     Once a HMM is selected, it is possible to retrieve, 
by estimation, the most probable status given an 
output sequence. Therefore, the output sequence of 

the ANN during the test set can be associated to the 
most probable annotation sequence, that besides will 
fulfil the probability requisites required by the HMM. 
In this way it is guaranteed that the final annotation 
sequence in the file is coherent with the physiological 
act of sleep.  
 
 
4   Results 
The calculation of the probabilities between stage 
transition confirms the physiological restrictions of 
sleep. Table 1 shows that stage repetition (diagonal) 
and smooth transitions (adjacent stages) are quite 
usual. 
 
Table 1. Transition probability between different 
stages in the 4 selected records. W; wake, R:REM 
sleep, MT: movement time (-<0,01) 

 Subsequent Stage 

Previous 
Stage 

W 1 2 3 4 R MT 

W 0,92 0,07 0,02 - - - - 

1 0,15 0,52 0,33 - - - - 

2 0,03 0,07 0,85 0,04 0,01 0,01 0,00 

3 0,01 0,01 0,46 0,39 0,11 - 0,02 

4 - - 0,10 0,14 0,74 - 0,01 

R 0,02 0,03 0,01 - - 0,95 - 

MT - 0,25 0,75 - - - - 

 
Table 2 shows that the ANN obtains good results 
(greater than 50%) in the most important stages (in 
bold).  It is also valuable to note that arises high error 
probabilities (in italic) that would be desirable to 
avoid. 
 
Table 2. Emission probability for the ANN trained for 
record SLP45 of the MIT database (-<0.01). 

 Expert Annotations 

MLP W 1 2 3 4 R MT 

W 0.93 - 0.02 0.01 0.02 0.03 - 

1 0.20 0.20 0.41 - - 0.17 0.02 

2 0.02 0.01 0.91 0.01 0.02 0.03 0.01 

3 0.04 - 0.27 0.65 0.04 - - 

4 0.02 - 0.08 0.27 0.63 - - 

R 0.06 0.01 0.02 - - 0.89 0.01 

MT 0.25 - - - - 0.25 0.50 

Number  of 
Annotations 86 29 292 33 15 63 2 
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Once the sequence of classes produced by the ANN is 
obtained, the algorithm searches the compatible 
sequence of the most probable states with the hidden 
model of Markov defined by the calculated 
probabilities. This corrected sequence of classes 
improves the results in the test set and  also improves 
the results in the total calculation of samples in 3 of 
the 4 records.  
 
Table 3. Percentage of success of the stage detection  
by MLP and the correction by the HMM. 

Complete set Test set % 
Success MLP +HMM MLP +HMM 

SLP32 91.09 88.59 73.50 80.50 

SLP37 86.57 91.00 69.09 80.91 

SLP41 52.69 63.72 47.69 63.08 

SLP45 82.24 86.05 55.83 71.67 

 
In the case of record SLP41 the success improves a 
15.39% in the test set and, in the worst case, also an 
improvement of 7% in record SLP32 is obtained. 
Considering the total of samples, it is also achieved 
an improvement of 11.03% in record SLP41 and a 
worsening, only of 2.5%, in record SLP32. 
 
Table 4. Kappa coefficient in the stage detection by 
MLP and the correction by the HMM. 

Complete set Test set 
Agreement 

MLP +HMM MLP +HMM 

SLP32 0,83 0,78 0,54 0,65 

SLP37 0,73 0,82 0,37 0,59 

SLP41 0,22 0,38 0,24 0,38 

SLP45 0,73 0,79 0,40 0,61 

 
 

5   Conclusions  
In the present work the use of the physiological 
restrictions that exist in any temporary biological 
process is proposed to improve the efficiency of the 
classification, in this case, of the sleep stages. The 
hidden models of Markov offer an excellent frame 
work to implement in an efficient way the dynamics 
of systems. The modelling confirms that the 
transitions between stages are smooth and the abrupt 
changes are not probable. This fact, together with the 
high rate of successes of the multilayer perceptron 
(78,15±17,35%) on the total set of samples allows a 
better estimation of the real sequence of sleep stages 
in the patients. Improvements of 0,17±0,05 in the 

Kappa coefficient and of 12,51±4,09% in success in 
the test set have been achieved on 4 records of the 
MIT-BIH database. The improvements also reach to 
the training sequence, obtaining finally an increase of 
the Kappa index of 0,06±0,08 and 4,19±5,53% in 
success on the total set of samples. 
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